Application of Data Mining to Predict Product Sales Using the K-Means Method

Authors

    Titania Delfiano( 1 ) Desiyanna Lasut( 2 )

    (1) Buddhi Dharma University
    (2) Universitas Buddhi Dharma

Keywords:


Clustering, Data Mining, K-means Algorithm, Predict Future Sales, Sales

Abstract

Sales activities that run every day generate large amounts of transaction data which can become data stacks. This also happened in a bag-selling shop called Toko Blessing. Toko Blessing is a bag sales business that focuses on children's school supplies with various categories such as school bags, drink bottle bags, and lunch box bags which have several variants of models and motifs in each category. With so many product variations and manual reporting, Toko Blessing faces difficulties in determining which products are best-selling and need to be added in large quantities to meet buyer demands and avoid the accumulation of less desirable products. With the availability of large sales data, if processed properly this data can be used to design the right business strategy. The K-means method is used because it makes it easier for the store to analyze and classify data to find out the level of the product through large amounts of sales transaction data that can be done quickly. The K-means method aims to determine sales patterns by looking at Blessing Shop sales transactions to help find out which products are often sold/best-selling and to predict future sales. From the data mining application using the K-means method, sales reports were generated based on sales transaction data from January 2021 to December 2022 totaling 1,188 data, which can later be used to assist Blessing Stores in making decisions on which products are superior to predict sales in the coming year.

Downloads

Download data is not yet available.

References

Normah, S. Nurajizah, and A. Salbinda, “Penerapan Data Mining Metode K-Means Clustering Untuk Analisa Penjualan Pada Toko Fashion Hijab Banten,” J. Tek. Komput. AMIK BSI, vol. 7, no. 2, pp. 158–163, 2021, doi: 10.31294/jtk.v4i2.

A. F. Budiantara and C. Budihartanti, “Implementasi Data Mining Dalam Manajemen Inventory Pada Pt. Mastersystem Infotama Menggunakan Metode Algoritma Apriori,” PROSISKO J. Pengemb. Ris. dan Obs. Sist. Komput., vol. 7, no. 1, Mar. 2020, doi: 10.30656/prosisko.v7i1.2130.

Nawassyarif, M. Julkarnain, and K. Rizki Ananda, “Sistem Informasi Pengolahan Data Ternak Unit Pelaksana Teknis Produksi Dan Kesehatan Hewan Berbasis Web,” J. Inform. Teknol. dan Sains, vol. 2, no. 1, pp. 32–39, 2020, doi: 10.51401/jinteks.v2i1.556.

H. Situmorang, “Sistem Informasi Pengelolahan Data Alumni Berbasis Web (Studi Pada Fakultas Sain, Teknologi Dan Informasi) Universitas Sari Mutiara Indonesia,” J. Mahajana Inf., vol. 4, no. 1, pp. 34–48, 2019.

J. Nasir, “Penerapan Data Mining Clustering Dalam Mengelompokan Buku Dengan Metode K-Means,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 11, no. 2, pp. 690–703, Oct. 2020, doi: 10.24176/simet.v11i2.5482.

A. M. Retta, A. Isroqmi, and T. D. Nopriyanti, “Pengaruh Penerapan Algoritma Terhadap Pembelajaran Pemrograman Komputer,” Indiktika J. Inov. Pendidik. Mat., vol. 2, no. 2, pp. 126–135, May 2020, doi: 10.31851/indiktika.v2i2.4125.

Y. Dharma Putra, M. Sudarma, and I. B. A. Swamardika, “Clustering History Data Penjualan Menggunakan Algoritma K-Means,” Maj. Ilm. Teknol. Elektro, vol. 20, no. 2, p. 195, 2021, doi: 10.24843/mite.2021.v20i02.p03.

Maydianto and Muhammat Rasid Ridho, “Rancang Bangun Sistem Informasi Point of Sale Dengan Framework Codeigniter Pada Cv Powershop,” J. Comasie, vol. 4, no. 2, pp. 50–59, 2021, [Online]. Available: http://ejournal.upbatam.ac.id/index.php/comasiejournal/article/view/3173

R. H. Taufik and A. Leo, “Analisis Dan Perancangan E-Commerce Berbasis Web Penjualan Dan Stok Barang Market Digital Pada Pt. Mahajaya Plastindo …,” Akselerator J. Sains Terap., vol. 3, no. 2, pp. 83–94, 2022, [Online]. Available: https://jurnal.buddhidharma.ac.id/index.php/aksel/article/view/1858%0Ahttps://jurnal.buddhidharma.ac.id/index.php/aksel/article/download/1858/1164

A. Sudarso, “Pemanfaatan Basis Data, Perangkat Lunak Dan Mesin Industri Dalam Meningkatkan Produksi Perusahaan (Literature Review Executive Support System (Ess) for Business),” J. Manaj. Pendidik. Dan Ilmu Sos., vol. 3, no. 1, pp. 1–14, 2022, doi: 10.38035/jmpis.v3i1.838.

Dermawan, D. S. D. Putra, and L. W. Kusuma, “Aplikasi Pendaftaran Seminar Menggunakan Metode Mvc Berbasis Website Menggunakan Framework Codeigniter 3.1.10,” J. Algor, vol. 1, no. 2, 2020.

R. D. Safitri, A. Susanto, R. Rino, and L. W. Kusuma, “Rancang Bangun Aplikasi Absensi Sekolah Minggu Dengan Pengenalan Wajah Menggunakan Principal Component Analysis (Pca) Pada Gereja Gbi Modernland,” Algor, vol. 2, no. 2, pp. 31–40, 2021, doi: 10.31253/algor.v2i2.567.

V. R. Prasetyo, H. Lazuardi, A. A. Mulyono, and C. Lauw, “Penerapan Aplikasi RapidMiner Untuk Prediksi Nilai Tukar Rupiah Terhadap US Dollar Dengan Metode Linear Regression,” J. Nas. Teknol. dan Sist. Inf., vol. 7, no. 1, pp. 8–17, 2021, doi: 10.25077/teknosi.v7i1.2021.8-17.

A. Hendri and A. S. Mochammad, “Sistem informasi pelaksanaan kegiatan komisi kepolisian nasional berbasis desktop,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 2, no. 1, pp. 14–23, 2021, doi: 10.37859/coscitech.v2i1.2393.

Gustientiedina, M. H. Adiya, and Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan,” J. Nas. Teknol. dan Sist. Inf., vol. 5, no. 1, pp. 17–24, 2019, doi: 10.25077/teknosi.v5i1.2019.17-24.

Downloads

Published

2023-12-28

How to Cite

[1]
T. Delfiano and D. Lasut, “Application of Data Mining to Predict Product Sales Using the K-Means Method”, bit-Tech, vol. 6, no. 2, pp. 103–109, Dec. 2023.

Issue

Section

Articles
Abstract views: 111 / PDF downloads: 150