Market Segmentation Analysis Using the K-Means Algorithm to Determine Sales Patterns

Authors

    Clerence Antonius( 1 ) Desiyanna Lasut( 2 )

    (1) Buddhi Dharma University
    (2) Buddhi Dharma University

DOI:


https://doi.org/10.32877/bt.v7i1.1504

Keywords:


Clustering, Database, Knowledge Discovery in , K-Means Algorithm, Sales Pattern, Stock

Abstract

This research aims to apply the K-Means method in classifying egg stock, speeding up stock searches to meet consumer demand, and efficiently analyzing the amount of egg stock for inventory at PT. Kaizen Prima Bersama. The prospect of developing laying hens is expected to be able to meet community demand, especially for use as a business to meet community production and consumption needs. As datasets grow, single CPU based approaches will lose their efficacy. This research aims to develop a parallel universal K-Means algorithm that is capable of handling larger datasets. To overcome this challenge, the K-Means Clustering algorithm is used. The application of the K-Means clustering algorithm in managing egg supplies provides advantages in recording data. This algorithm facilitates categorization of inventory levels based on specific attributes. Utilizing available information, the K-Means clustering algorithm professionally groups egg supply into daily transactions, to meet consumer needs.This research method uses data mining, namely the Knowledge Discovery Database (KDD) to obtain various patterns obtained from data. This method is expected to help company manages egg stocks more effectively. The benefits resulting from this research include the development of an information system that can speed up the data input and output process on egg stock taking, reduce the accumulation of records in paper form, and create an information system that makes work more efficient and easier to understand. With the information system implemented, it is hoped that company can improve operational performance and respond quickly to the dynamics of the egg market.

Downloads

Download data is not yet available.

References

Widyantara, I.N. P. dan I Gusti. A. K. S. (2017) 'Analisis Strategi Pemasaran Telur Ayam (Studi Kasus di Desa Pesedahan dan Desa Bugbug, Kabupaten Karangasem)', E- Jurnal Manajemen, 6 (7), pp. 3766-3793.

Dermawan, R. (2018). Analysis Feasibility of Effort Breeding Laying Hens. Jambura Journal of Animal Science, 1(1), pp. 25-39.

Badan Pusat Statistik (BPS). (2023). Rata-Rata Konsumsi per Kapita Seminggu Beberapa Macam Bahan Makanan Penting, 2007-2023. bps.go.id. (diakses pada tanggal 05 Februari 2024).

Badan Pusat Statistik (BPS). (2023). Produksi Telur Ayam Petelur menurut Provinsi (Ton), 2021-2023. bps.go.id. (diakses pada tanggal 05 Februari 2024).

Aulia, S. (2021). ‘Klasterisasi Pola Penjualan Pestisida Menggunakan Metode KMeans Clustering (Studi Kasus Di Toko Juanda Tani Kecamatan Hutabayu Raja)’. Djtechno: Jurnal Teknologi Informasi, 1(1), pp. 1–5. https://doi.org/10.46576/djtechno.v1i1.964.

Parlina, I., Windarto, A. P., Wanto, A., & Lubis, M. R. (2018). 'Memanfaatkan Algoritma K-Means Dalam Menentukan Pegawai Yang Layak Mengikuti Asessment Center', CESS (Journal of Computer Engineering System and Science), 3(1), pp. 87–93. doi: 0.24114/cess.v3i1.8192.

Normah, Nurajizah, S., & Salbinda, A. (2021). Penerapan Data Mining Metode K-MeansClustering Untuk Analisa Penjualan Pada Toko Fashion Hijab Banten. Jurnal Teknik Komputer AMIK BSI, 7(2), 158–163. doi:10.31294/jtk.v4i2.

Martin Halomoan Lumbangaol, M. R. R. (2020) ‘Rancang Bangun Sistem Informasi Penjualan dan Penyewaan Properti Berbasis WEB Di Kota Batam’, Jurnal Comasie, 01(03), pp. 83–92. Situmorang, H. (2019). Sistem Informasi Pengelolahan Data Alumni Berbasis Web (Studi Pada Fakultas Sain, Teknologi Dan Informasi) Universitas Sari Mutiara Indonesia. Jurnal Mahajana Informasi, 4(1), 34–48.

Nawassyarif, M. Julkarnain and Rizki Ananda, K. (2020) ‘Sistem Informasi Pengolahan Data Ternak Unit Pelaksana Teknis Produksi Dan Kesehatan Hewan Berbasis Web’, Jurnal Informatika, Teknologi dan Sains, 2(1), pp. 32–39. doi: 10.51401/jinteks.v2i1.556.

Firliana, R. and Rhohman, F. (2019) ‘Aplikasi Sistem Informasi Absensi Mahasiswa dan Dosen’, Journal of Computer and Information Technology, 2(2), pp. 70–74.

Khairunnisa, K., & Wulan, N. (2020). Perancangan Intelligent Tutoring System Sebagai Upaya Inovatif Pada Pembelajaran Algoritma dan Struktur Data. Algoritma:Jurnal Ilmu Komputer Dan Informatika, 4(2), 34-42. doi:10.30829/algoritma.v4i2.8515.

Retta, A. M., Isroqmi, A., & Nopriyanti, T. D. (2020). Pengaruh Penerapan Algoritma Terhadap Pembelajaran Pemrograman Komputer. Indiktika:Jurnal Inovasi Pendidikan Matematika, 2(2), 126–135. doi:10.31851/indiktika.v2i2.4125.

Gustientiedina, Adiya, M. H., & Desnelita, Y. (2019). Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan. Jurnal Nasional Teknologi Dan Sistem Informasi, 5(1), 17–24. doi:10.25077/teknosi.v5i1.2019.17-24.

Dharma Putra, Y., Sudarma, M., & Swamardika, I. B. A. (2021). Clustering History Data Penjualan Menggunakan Algoritma K-Means. Majalah Ilmiah Teknologi Elektro, 20(2), 195. doi:10.24843/mite.2021.v20i02.p03.

Hernawati, Y. et al. (2020) ‘Evaluasi Sistem Pengendalian Stock Barang Jadi Di Gudang PT. Indocare Citra Pasifik Group’, E-Journal Equilibrum Manajemen, 6(2), pp. 20– 27.

Nawassyarif, M. Julkarnain and Rizki Ananda, K. (2020) ‘Sistem Informasi Pengolahan Data Ternak Unit Pelaksana Teknis Produksi Dan Kesehatan Hewan Berbasis Web’, Jurnal Informatika, Teknologi dan Sains, 2(1), pp. 32–39. doi: 10.51401/jinteks.v2i1.556.

Safitri, R. D. et al. (2021) ‘Rancang Bangun Aplikasi Absensi Sekolah Minggu Dengan Pengenalan Wajah Menggunakan Principal Component Analysis (PCA) Pada Gereja GBI Modernland’, Algor, 2(2), pp. 31–40. doi: 10.31253/algor.v2i2.567.

Jantce TJ Sitinjak, D.D., Maman, . and Suwita, J. (2020) ‘Analisa Dan Perancangan Sistem Informasi Administrasi Kursus Bahasa Inggris Pada Intensive English Course Di Ciledug Tangerang’, Insan Pembangunan Sistem Informasi dan Komputer (IPSIKOM), 8(1). doi:10.58217/ipsikom.v8i1.164.

Prasetyo, V. R. et al. (2021) ‘Penerapan Aplikasi RapidMiner Untuk Prediksi Nilai Tukar Rupiah Terhadap US Dollar Dengan Metode Linear Regression’, Jurnal Nasional Teknologi dan Sistem Informasi, 7(1), pp. 8–17. doi: 10.25077/teknosi.v7i1.2021.8- 17.

Mardi, Y. (2017) 'Data Mining: Klarifikasi Menggunakan Algoritma C4.5', Jurnal Edik Informatika. 2(2), pp. 213-219.

Published

2024-08-20

How to Cite

[1]
C. Antonius and D. Lasut, “Market Segmentation Analysis Using the K-Means Algorithm to Determine Sales Patterns”, bit-Tech, vol. 7, no. 1, pp. 68–76, Aug. 2024.

Issue

Section

Articles
DOI : https://doi.org/10.32877/bt.v7i1.1504
Abstract views: 57