Analisis Faktor dan Prediksi Atrisi untuk Optimalisasi Retensi Karyawan Menggunakan Machine Learning

Authors

    A. Reza Baehaqa Jamroni Jamroni( 1 ) Wahyu Hadikristanto( 2 ) Muhamad Fatchan( 3 )

    (1) Universitas Pelita Bangsa
    (2) Universitas Pelita Bangsa
    (3) Universitas Pelita Bangsa

DOI:

https://doi.org/10.32877/bt.v7i3.2301

Keywords:


Atrisi Karyawan, Feature Importance, K-nearest neighbors, Random Forest, Retensi Karyawan

Abstract

Atrisi karyawan merupakan fenomena penurunan jumlah tenaga kerja dalam sebuah organisasi yang disebabkan oleh faktor-faktor seperti pengunduran diri, pensiun, atau alasan lainnya. Fenomena ini dapat berdampak negatif pada perusahaan, termasuk penurunan produktivitas, gangguan operasional, dan meningkatnya biaya rekrutmen serta pelatihan. Penelitian ini bertujuan untuk menganalisis faktor-faktor yang mempengaruhi atrisi karyawan dan mengembangkan model prediksi menggunakan algoritma machine learning, yaitu Random Forest dan K-Nearest Neighbors (KNN). Adapun penelitian ini menggunakan dataset IBM HR Analytics Employee Attrition & Performance. Metode penelitian melibatkan tahap pengumpulan data, pemrosesan data, pelatihan model menggunakan algoritma Random Forest dan KNN, serta evaluasi kinerja model berdasarkan akurasi, precision, recall, F1-score, AUC, dan ROC curve. Hasil penelitian menunjukkan bahwa algoritma Random Forest memiliki akurasi 93% dan nilai AUC sebesar 0.98, lebih tinggi dibandingkan dengan KNN yang hanya mencapai akurasi 88% dan AUC 0.96. Selain itu, Random Forest menunjukkan kinerja yang lebih seimbang pada precision, recall, dan F1-score, serta lebih rendah dalam kesalahan prediksi pada kelas "Atrisi" dan "Tidak Atrisi". Pada analisis feature importance mengidentifikasi faktor utama yang mempengaruhi atrisi karyawan, seperti RelationshipSatisfaction, Work-Life Balance, Age, StockOptionLevel, dan NumberofCompaniesWorked. Temuan ini memberikan kontribusi penting bagi perusahaan dalam merancang strategi retensi yang lebih efektif dengan memanfaatkan data yang ada. Penelitian ini juga merekomendasikan penggunaan dataset yang lebih besar, serta penerapan algoritma dan teknik lain seperti SMOTE untuk meningkatkan akurasi model dalam prediksi atrisi di masa depan.

Downloads

Download data is not yet available.

References

S. D. Paigude, S. C. Pangarkar, S. Hundekari, M. Mali, K. Wanjale, and Y. Dongre, “Potential of Artificial Intelligence in Boosting Employee Retention in the Human Resource Industry,” Int. J. Recent Innov. Trends Comput. Commun., vol. 11, no. 3s, pp. 1–10, 2023, doi: 10.17762/ijritcc.v11i3s.6149.

B. Ghani et al., “Challenges and Strategies for Employee Retention in the Hospitality Industry: A Review,” Sustainability, vol. 14, no. 5, p. 2885, 2022, doi: 10.3390/su14052885.

S. N. Khera and Divya, “Predictive Modelling of Employee Turnover in Indian IT Industry Using Machine Learning Techniques,” Vis. J. Bus. Perspect., vol. 23, no. 1, pp. 12–21, 2019, doi: 10.1177/0972262918821221.

A. Qutub, A. Al-Mehmadi, M. Al-Hssan, R. Aljohani, and H. S. Alghamdi, “Prediction of Employee Attrition Using Machine Learning and Ensemble Methods,” Int. J. Mach. Learn. Comput., vol. 11, no. 2, pp. 110–114, 2021, doi: 10.18178/ijmlc.2021.11.2.1022.

A. Raza, K. Munir, M. Almutairi, F. Younas, and M. M. S. Fareed, “Predicting Employee Attrition Using Machine Learning Approaches,” Appl. Sci., vol. 12, no. 13, p. 6424, 2022, doi: 10.3390/app12136424.

P. Hinge, A. Thakur, and H. Salunkhe, “Analysis of Human Resources Attrition: A Thematic and Sentiment Analysis Approach,” pp. 820–828, 2023, doi: 10.2991/978-94-6463-136-4_72.

C. S. Lim et al., “Hybrid GA–DeepAutoencoder–KNN Model for Employee Turnover Prediction,” Stat. Optim. Inf. Comput., vol. 12, no. 1, pp. 75–90, 2024, doi: 10.19139/soic-2310-5070-1799.

J. K. Patil, “Predicting HR Churn With Python and Machine Learning,” Jaz, 2023, doi: 10.53555/jaz.v44is8.3526.

N. B. Yahia, J. Hlel, and R. Colomo-Palacios, "From Big Data to Deep Data to Support People Analytics for Employee Attrition Prediction," Ieee Access, vol. 9, pp. 60447–60458, 2021, doi: 10.1109/access.2021.3074559.

J. Vasa and K. Masrani, “Foreseeing Employee Attritions Using Diverse Data Mining Strategies,” Int. J. Recent Technol. Eng., vol. 8, no. 3, pp. 620–626, 2019, doi: 10.35940/ijrte.b2406.098319.

R. Rianti and R. Andarsyah, “Prediksi Tingkat Atrisi Karyawan menggunakan Machine Learning,” vol. 18, no. 1, pp. 39–52, 2024.doi: https://doi.org/10.36787/jti.v18i1.1263.

M. Pratt, M. Boudhane, and S. Cakula, “Employee attrition estimation using random forest algorithm,” Balt. J. Mod. Comput., vol. 9, no. 1, pp. 49–66, 2021, doi: 10.22364/BJMC.2021.9.1.04.

X. Gao, J. Wen, and C. Zhang, “An Improved Random Forest Algorithm for Predicting Employee Turnover,” Math. Probl. Eng., vol. 2019, no. 1, 2019, doi: 10.1155/2019/4140707.

G. Rintang, W. Pratama, M. Fatchan, and W. Hadikristanto, “Improving Employee Retention Through Prediction and Risk Management Using Machine Learning,” vol. 2, no. 6, pp. 475–484, 2024. doi: https://doi.org/10.59890/ijarss.v2i6.1960.

M. Atef, D. S. Elzanfaly, and S. Ouf, “Early Prediction of Employee Turnover Using Machine Learning Algorithms 135 Original Scientific Paper,” Int. J. Electr. Comput. Eng. Syst., pp. 135–144, 2022.doi ; https://doi.org/10.32985/ijeces.13.2.6.

S. F. Sari and K. M. Lhaksmana, “Employee Attrition Prediction Using Feature Selection With Information Gain and Random Forest Classification,” J. Comput. Syst. Informatics, vol. 3, no. 4, pp. 410–419, 2022, doi: 10.47065/josyc.v3i4.2099.

Yoga Religia, Agung Nugroho, and Wahyu Hadikristanto, “Klasifikasi Analisis Perbandingan Algoritma Optimasi pada Random Forest untuk Klasifikasi Data Bank Marketing,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 187–192, 2021, doi: 10.29207/resti.v5i1.2813.

Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” J. KomtekInfo, vol. 10, pp. 1–7, 2023, doi: 10.35134/komtekinfo.v10i1.330.

A. C. Kusuma, H. Soetanto, U. B. Luhur, and K. J. Selatan, “CLASSIFICATION OF ELDERLY HEALTH USING K-NEAREST NEIGHBOR COMPARISON , NAIVE BAYES AND DECISION TREE KLASIFIKASI KESEHATAN LANSIA MENGGUNAKAN PERBANDINGAN METODE K-NEAREST NEIGHBOUR , NAIVE,” vol. 10, no. 1, pp. 559–570, 2025.doi: https://doi.org/10.35314/2q4a1524

M. T. Rfe and D. A. N. Adaboost, “Optimalisasi prediksi kehilangan karyawan menggunakan teknik rfe, smote, dan adaboost,” vol. 9, no. 4, pp. 2131–2145, 2024.doi: https://doi.org/10.29100/jipi.v9i4.5642.

A. Amalia, M. S. Lydia, S. D. Fadilla, and M. Huda, “Perbandingan Metode Klaster dan Preprocessing Untuk Dokumen Berbahasa Indonesia,” J. Rekayasa Elektr., vol. 14, no. 1, pp. 35–42, 2018, doi: 10.17529/jre.v14i1.9027.

R. G. Gunawan, Erik Suanda Handika, and Edi Ismanto, “Pendekatan Machine Learning Dengan Menggunakan Algoritma Xgboost (Extreme Gradient Boosting) Untuk Peningkatan Kinerja Klasifikasi Serangan Syn,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 3, pp. 453–463, 2022, doi: 10.37859/coscitech.v3i3.4356.

F. Nuraeni, D. Kurniadi, and M. H. Diazki, “Algoritma K-Nearest Neighbor pada Kasus Dataset Imbalanced untuk Klasifikasi Kinerja Karyawan Perusahaan,” J. Teknol. Inf. dan Ilmu Komput., vol. 11, no. 3, pp. 557–568, 2024, doi: 10.25126/jtiik.938144.

G. A. Sandag, “Prediksi Rating Aplikasi App Store Menggunakan Algoritma Random Forest,” CogITo Smart J., vol. 6, no. 2, pp. 167–178, 2020, doi: 10.31154/cogito.v6i2.270.167-178.

Downloads

Published

2025-04-25

How to Cite

[1]
A. R. B. J. Jamroni, Wahyu Hadikristanto, and Muhamad Fatchan, “Analisis Faktor dan Prediksi Atrisi untuk Optimalisasi Retensi Karyawan Menggunakan Machine Learning”, bit-Tech, vol. 7, no. 3, pp. 1057–1067, Apr. 2025.

Issue

Section

Articles
DOI : https://doi.org/10.32877/bt.v7i3.2301
Abstract views: 120 / PDF downloads: 76