Analisis Sentimen Calon Kepala Daerah Maluku Utara dengan Metode CRISP-DM
DOI:
https://doi.org/10.32877/bt.v7i3.2285Keywords:
Analisis Sentimen, CRISP-DM, Media Sosial, Neural Network, Pemilihan Kepala Daerah
Abstract
Pemilihan kepala daerah merupakan salah satu wujud nyata dari demokrasi lokal yang memungkinkan masyarakat mengekspresikan aspirasi politiknya secara langsung. Namun, untuk memahami dinamika persepsi publik terhadap calon kepala daerah, dibutuhkan pendekatan analitis yang mampu menafsirkan opini masyarakat dalam skala luas dan waktu nyata. Penelitian ini bertujuan untuk menganalisis sentimen masyarakat terhadap calon kepala daerah di Provinsi Maluku Utara dengan memanfaatkan data komentar dari media sosial YouTube dan TikTok. Subjek penelitian berupa komentar publik yang dikumpulkan melalui teknik crawling dengan kata kunci tertentu terkait nama calon dan isu politik lokal. Penelitian ini menggunakan pendekatan CRISP-DM (Cross Industry Standard Process for Data Mining) yang terdiri dari enam tahapan: pemahaman bisnis, pemahaman data, persiapan data, pemodelan, evaluasi, dan deployment. Proses analisis mencakup preprocessing teks seperti tokenizing, case folding, stop word removal, dan stemming. Komentar diklasifikasikan secara manual ke dalam tiga kategori sentimen: positif, negatif, dan netral. Model klasifikasi dibangun menggunakan algoritma Neural Network melalui platform Orange Data Mining. Hasil penelitian menunjukkan bahwa kandidat 3 memperoleh sentimen positif tertinggi, kandidat 1 mendapat sentimen negatif terbanyak, dan kandidat 5 mendominasi pada sentimen netral. Model menunjukkan kinerja tinggi dengan akurasi mencapai 97,2%, presisi 98,5%, dan recall 88,8%. Temuan ini menunjukkan bahwa kombinasi metode CRISP-DM dan pembelajaran mesin dapat memberikan wawasan strategis yang bermanfaat bagi pengambil kebijakan dan tim kampanye dalam memahami persepsi publik secara lebih komprehensif dan real-time. Penelitian ini dapat menjadi referensi bagi pemangku kepentingan dalam merancang strategi komunikasi politik yang lebih tepat sasaran.
Downloads
References
A. M. Johan, “Sistem Pemilihan Kepala Daerah Pada Daerah Yang Memberlakukan Desentralisasi Asimetris,” Al-Qisth Law Rev., vol. 5, no. 1, p. 70, 2021, doi: 10.24853/al-qisth.5.1.70-98.
R. Pakina, “Recruitment and Regeneration Political Party: The Influence on Election of Regional Heads,” vol. 140, no. Icleh, pp. 544–550, 2020, doi: 10.2991/aebmr.k.200513.105.
P. Nandwani and R. Verma, “A review on sentiment analysis and emotion detection from text,” Soc. Netw. Anal. Min., vol. 11, no. 1, pp. 1–19, 2021, doi: 10.1007/s13278-021-00776-6.
J. R. Jim, M. A. R. Talukder, P. Malakar, M. M. Kabir, K. Nur, and M. F. Mridha, “Recent advancements and challenges of NLP-based sentiment analysis: A state-of-the-art review,” Nat. Lang. Process. J., vol. 6, no. November 2023, p. 100059, 2024, doi: 10.1016/j.nlp.2024.100059.
N. Munasatya and S. Novianto, “Natural Language Processing untuk Sentimen Analisis Presiden Jokowi Menggunakan Multi Layer Perceptron,” Techno.Com, vol. 19, no. 3, pp. 237–244, 2020, doi: 10.33633/tc.v19i3.3630.
I. Oktavia and A. R. Isnain, “Analisis Sentimen Opini Terhadap Tools Artificial Intelligence (AI) Berdasarkan Twitter Menggunakan Algoritma Naïve Bayes,” J. Media Inform. Budidarma, vol. 8, no. 2, pp. 777–787, 2024, doi: https://doi.org/10.30865/mib.v8i2.7524.
S. F. Diba and J. Nugraha, “Implementation of Naive Bayes Classification Method for Sentiment Analysis on Community Opinion to Indonesian Criminal Code Draft,” vol. 474, no. Isstec 2019, pp. 186–192, 2020, doi: 10.2991/assehr.k.201010.027.
A. K. Rotty, T. S. Dewayana, and A. N. Habyba, “Cross-Industry Standard Process for Data Mining (CRISP-DM) Approach in Determining the Most Significant Employee Engagement Drivers to Sales at X Car Dealership,” pp. 3368–3379, 2023, doi: 10.46254/ap03.20220552.
G. Demirezen, T. Taskaya Temizel, and A. M. Brouwer, "Reproducible machine learning research in mental workload classification using EEG," Front. Neuroergonomics, vol. 5, 2024, doi: 10.3389/fnrgo.2024.1346794.
F. Martinez-Plumed et al., “CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 8, pp. 3048–3061, 2021, doi: 10.1109/TKDE.2019.2962680.
S. O. Atiku and I. C. Obagbuwa, “Machine Learning Classification Techniques for Detecting the Impact of Human Resources Outcomes on Commercial Banks Performance,” Appl. Comput. Intell. Soft Comput., vol. 2021, no. September, 2021, doi: 10.1155/2021/7747907.
Omari Firas, “A combination of SEMMA & CRISP-DM models for effectively handling big data using formal concept analysis based knowledge discovery: A data mining approach,” World J. Adv. Eng. Technol. Sci., vol. 8, no. 1, pp. 009–014, 2023, doi: 10.30574/wjaets.2023.8.1.0147.
E. Ratnasari, “Analisis Sentimen Kepala Daerah Terpilih Jelang dan Pasca Pelantikan Resmi Sebagai Pemimpin Daerah Terpilih pada Kontestasi Pemilihan Kepala Daerah 2020,” Dialekt. KOMUNIKA J. Kaji. Komun. dan Pembang. Drh., vol. 9, no. 1, pp. 96–117, 2021, doi: 10.33592/dk.v9i1.1573.
Y. Gunawan, I. Purnama, and R. Rohani, “Sentiment Analysis of Twitter towards the 2024 Indonesian Presidential Candidates Using the Naïve Bayes Algorithms,” Int. J. Sci. Technol. Manag., vol. 5, no. 4, pp. 953–961, 2024, doi: 10.46729/ijstm.v5i4.1154.
M. Z. Ansari, M. B. Aziz, M. O. Siddiqui, H. Mehra, and K. P. Singh, “Analysis of Political Sentiment Orientations on Twitter,” Procedia Comput. Sci., vol. 167, pp. 1821–1828, 2020, doi: 10.1016/j.procs.2020.03.201.
Q. A. Xu, V. Chang, and C. Jayne, “A systematic review of social media-based sentiment analysis: Emerging trends and challenges,” Decis. Anal. J., vol. 3, no. April, p. 100073, 2022, doi: 10.1016/j.dajour.2022.100073.
N. V. Babu and E. G. M. Kanaga, “Sentiment Analysis in Social Media Data for Depression Detection Using Artificial Intelligence: A Review,” SN Comput. Sci., vol. 3, no. 1, pp. 1–20, 2022, doi: 10.1007/s42979-021-00958-1.
D. J. Hussein, M. N. Rashad, K. I. Mirza, and D. L. Hussein, “Machine Learning Approach to Sentiment Analysis in Data Mining,” Passer J. Basic Appl. Sci., vol. 4, no. 1, pp. 71–77, 2022, doi: 10.24271/psr.2022.312664.1101.
A. Y. Chandra, P. T. Prasetyaningrum, and I. Pratama, “Implementing Neural Network on Data Mining To Predicting Key Performance Index From Employee,” J. Res. Soc. Sci. Econ. Manag., vol. 2, no. 4, pp. 555–561, 2022, doi: 10.59141/jrssem.v2i04.313.
L. Nurlaela, Y. Suhanda, A. Sopian, C. S. Dewi, and R. Syahrial, “Pengembangan Framework Data Mining Berbasis Deep Neural Network Dengan Eksplorasi Teknik Transfer Learning Untuk Prediksi Dan Klasifikasi Data”.
H. Jelodar, Y. Wang, R. Orji, and S. Huang, “Deep Sentiment Classification and Topic Discovery on Novel Coronavirus or COVID-19 Online Discussions: NLP Using LSTM Recurrent Neural Network Approach,” IEEE J. Biomed. Heal. Informatics, vol. 24, no. 10, pp. 2733–2742, 2020, doi: 10.1109/JBHI.2020.3001216.
E. Çano and M. Morisio, “A data-driven neural network architecture for sentiment analysis,” Data Technol. Appl., vol. 53, no. 1, pp. 2–19, 2020, doi: 10.1108/DTA-03-2018-0017.
N. Gerhart, N. Gerhart, R. Torres, and L. Giddens, “Association for Information Systems AIS Electronic Library ( AISeL ) Towards an Agile CRISP-DM Process Towards an Agile CRISP-DM Process,” 2023.
C. Schröer, F. Kruse, and J. M. Gomez, “A systematic literature review on applying CRISP-DM process model,” Procedia Comput. Sci., vol. 181, no. 2019, pp. 526–534, 2021, doi: 10.1016/j.procs.2021.01.199.
J. Brzozowska, J. Pizon, G. Baytikenova, A. Gola, A. Zakimova, and K. Piotrowska, “Data Engineering in Crisp-Dm Process Production Data – Case Study,” Appl. Comput. Sci., vol. 19, no. 3, pp. 83–95, 2023, doi: 10.35784/acs-2023-26.
M. A. Jassim and S. N. Abdulwahid, “Data Mining preparation: Process, Techniques and Major Issues in Data Analysis,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1090, no. 1, p. 012053, 2021, doi: 10.1088/1757-899x/1090/1/012053.
H. Wiemer, L. Drowatzky, and S. Ihlenfeldt, “Data mining methodology for engineering applications (DMME)-A holistic extension to the CRISP-DM model,” Appl. Sci., vol. 9, no. 12, 2019, doi: 10.3390/app9122407.
L. Lenc and T. Hercig, “Neural networks for sentiment analysis in czech,” CEUR Workshop Proc., vol. 1649, pp. 48–55, 2016.
A. C. M. V. Srinivas, C. Satyanarayana, C. Divakar, and K. P. Sirisha, “Sentiment Analysis using Neural Network and LSTM,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1074, no. 1, p. 012007, 2021, doi: 10.1088/1757-899x/1074/1/012007.
A. Dåderman, S. Rosander, K. Skolan, F. Elektroteknik, and O. Datavetenskap, “Evaluating Frameworks for Implementing Machine Learning in Signal Processing A Comparative Study of CRISP-DM, SEMMA and KDD,” Digit. Vetensk. Ark, vol. 38, pp. 1–43, 2018.
L. Z.S. Sudar, J. L. Imbenay, I. Budi, A. Ramadiah, P. K. Putra, and A. B. Santoso, “Textual Analysis for Public Sentiment Toward National Police Using CRISP-DM Framework,” Rev. d’Intelligence Artif., vol. 38, no. 1, pp. 63–72, 2024, doi: 10.18280/ria.380107.
V. R. Joseph, “Optimal ratio for data splitting,” Stat. Anal. Data Min., vol. 15, no. 4, pp. 531–538, 2022, doi: 10.1002/sam.11583.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 bit-Tech

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
I hereby assign and transfer to bit-Tech all exclusive copyright ownership rights to the above work. This includes, but is not limited to, the right to publish, republish, downgrade, distribute, transmit, sell, or use the work and other related materials worldwide, in whole, or in part, in all languages, in electronic, printed, or any other form of media, now known or hereafter developed and reserves the right to permit or license a third party to do any of the above. I understand that this exclusive right will belong to bit-Tech from the date the article is accepted for publication. I also understand that bit-Tech, as the copyright owner, has sole authority to license and permit reproduction of the article. I understand that, except for copyright, any other proprietary rights associated with the work (e.g. patents or other rights to any process or procedure) must be retained by the author. In addition, I understand that bit-Tech permits authors to use their papers in any way permitted by the applied Creative Commons license.