Analisa Prediksi Turnover Karyawan menggunakan Machine Learning
DOI:
https://doi.org/10.32877/bt.v7i2.1999
Keywords:
Data Imbalance, Employee Attrition, Machine Learning, Random Forest, SVM
Abstract
Penelitian ini membahas penerapan machine learning untuk memprediksi turnover karyawan, yang merupakan tantangan utama dalam manajemen Sumber Daya Manusia (SDM). Turnover karyawan sering kali disebabkan oleh berbagai faktor, termasuk ketidakseimbangan kehidupan kerja, ketidakpuasan kerja, dan minimnya peluang pengembangan karier. Dalam penelitian ini, digunakan dataset IBM HR Analytics untuk menganalisis faktor-faktor yang memengaruhi turnover karyawan. Algoritma yang diterapkan meliputi Support Vector Machine (SVM) dan Random Forest. Proses penelitian dimulai dengan pengumpulan data, eksplorasi awal, praproses data, seleksi fitur, dan penyeimbangan data menggunakan teknik Synthetic Minority Over-sampling Technique (SMOTE). Evaluasi kinerja model dilakukan menggunakan confusion matrix untuk mengukur akurasi, presisi, recall, dan f1-score. Hasil analisis menunjukkan bahwa algoritma Random Forest memberikan kinerja yang lebih baik dibandingkan SVM. Random Forest mencapai akurasi 97,72%, sedangkan SVM memperoleh akurasi 92,51%. Setelah menerapkan SMOTE, akurasi meningkat menjadi 97% untuk Random Forest dan 93% untuk SVM. Selain akurasi, Random Forest juga unggul dalam metrik presisi, recall, dan f1-score, membuktikan keandalannya dalam memprediksi turnover karyawan. Temuan ini menegaskan bahwa pendekatan machine learning dapat digunakan untuk memahami pola turnover secara lebih mendalam. Dengan prediksi yang lebih akurat, perusahaan dapat merancang strategi retensi karyawan yang lebih efektif dan berbasis data, menciptakan lingkungan kerja yang mendukung produktivitas serta meningkatkan stabilitas tenaga kerja secara keseluruhan.
Downloads
References
Gary Dessler and B. Varrkey, “Human Resource Management by Gary Dessler 15th-ed,” 2005, [Online]. Available: http://www.pearsonmylabandmastering.com
A. Wilkinson, N. Bacon, T. Redman, and S. Snell, The SAGE handbook of human resource management. 2010. doi: 10.4135/9780857021496.
S. Najafi-Zangeneh, N. Shams-Gharneh, A. Arjomandi-Nezhad, and S. H. Zolfani, “An improved machine learning-based employees attrition prediction framework with emphasis on feature selection,” Mathematics, vol. 9, no. 11, 2021, doi: 10.3390/math9111226.
Dessler, Human Resource Management: Personnel Human Resource Management, vol. 6, no. January 2009. 2018. [Online]. Available: https://open.umn.edu/opentextbooks/BookDetail.aspx?bookId=71
N. Edition, Organizational Behavior. 2013. doi: 10.4324/9780203763209.
T. Konten, “73% Karyawan Tidak Puas dengan Pekerjaan Mereka,” Jobstreet. Accessed: Dec. 02, 2024. [Online]. Available: https://id.jobstreet.com/id/career-advice/article/73-karyawan-tidak-puas-dengan-pekerjaan-mereka
M. Dardiri and M. Sulhan, “Pengaruh Fasilitas Kerja, Lingkungan kerja Dan Kepuasan Kerja Terhadap Turnover Intention pada Karyawan Produksi PT Intim Harmonis Food Sukorejo,” J. Manuhara Pus. Penelit. Ilmu Manaj. dan Bisnis, vol. 1, no. 4, pp. 198–204, 2023, doi: 10.61132/manuhara.v1i4.218.
A. Nurfahrani and H. Armaniah, “Pengaruh Kompensasi dan Gaya Kepemimpinan Terhadap Turnover Intention Karyawan,” J. Ilm. Multidisiplin, vol. 1, no. 7, pp. 2986–6340, 2023, [Online]. Available: https://doi.org/10.5281/zenodo.8263456
J. Yarker, R. Lewis, E. Donaldson-Feilder, and P. Flaxman, Management competencies for preventing and reducing stress at work. London: HSE, 2007.
N. M. Thi Nong, N. Q. Phuong, and H. Duc-Son, “The effect of employee competence and competence – job – fit on business performance through moderating role of social exchange: A study in logistics firms,” Asian J. Shipp. Logist., vol. 40, no. 4, pp. 40–42, 2024, doi: 10.1016/j.ajsl.2024.10.001.
B. Raharjo, Deep Learning dengan Python. 2022.
M. Karimi, “Employee Turnover Analysis Using Machine Learning Algorithms”.
R. Punnoose, “Prediction of Employee Turnover in Organizations using Machine Learning Algorithms,” vol. 5, no. 9, pp. 22–26, 2016.
B. A. D. V and H. Rajeev, “Employee Attrition Prediction,” vol. 9246, no. 1, pp. 26–30, 2024, doi: 10.54105/ijdm.A1636.04010524.
C. Series, “Confusion Matrices and Rough Set Data Analysis Confusion Matrices and Rough Set Data Analysis,” 2019, doi: 10.1088/1742-6596/1229/1/012055.
Y. Zhang, Z. Cai, and H. Fei, Predicting Employee Turnover in High-Tech Enterprises Using Machine Learning: Based on the Psychological Contract Perspective, no. Cdems. Atlantis Press International BV, 2024. doi: 10.2991/978-94-6463-488-4.
M. A. Commitment, “JBTI: Jurnal Bisnis: Teori dan Implementasi Modeling Affective Commitment and Job Satisfaction as A Mediating Role in Predicting Turnover Intention among Gen Z,” vol. 15, no. 2, pp. 143–160, 2024.
F. Idayati et al., Pengembangan Sumber Daya Manusia Berkelanjutan. 2024
E. Vankov and K. Gadhoumi, "Supervised Learning," J. AI & Automation, 2024, doi: 10.1201/9781003254515-12
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 bit-Tech
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
I hereby assign and transfer to bit-Tech all exclusive copyright ownership rights to the above work. This includes, but is not limited to, the right to publish, republish, downgrade, distribute, transmit, sell, or use the work and other related materials worldwide, in whole, or in part, in all languages, in electronic, printed, or any other form of media, now known or hereafter developed and reserves the right to permit or license a third party to do any of the above. I understand that this exclusive right will belong to bit-Tech from the date the article is accepted for publication. I also understand that bit-Tech, as the copyright owner, has sole authority to license and permit reproduction of the article. I understand that, except for copyright, any other proprietary rights associated with the work (e.g. patents or other rights to any process or procedure) must be retained by the author. In addition, I understand that bit-Tech permits authors to use their papers in any way permitted by the applied Creative Commons license.