Identifikasi Performa Algoritma Fuzzy Mamdani pada Internet of Thing Kendali Proses Koagulasi Pembuatan Tahu
DOI:
https://doi.org/10.32877/bt.v7i2.1972
Keywords:
Algoritma Fuzzy Mamdani, Internet Of Thing, Kendali Proses, Koagulasi Tahu, Pembuatan Tahu
Abstract
Proses pembuatan tahu dilakukan dalam berapa tahapan. Tahapan terpenting dalam pembuatan tahu yakni terletak pada proses penggumpalan (koagulasi) sari kedelai yang telah direbus. Pada tahapan ini bayak faktor yang menentukan keberhasilannya, diantaranya suhu sari kedelai, PH cuka sebagai katalis reaksi koagulasi dan kecepatan pengadukan. Jika terjadi ketidak sesuaian salah satunya maka akan berakibat sari kedelai gagal menggumpal dan terbuang. Produksi tahu yang masih tradisional membuat pekerjaan ini masih mengandalkan kepiawaian pekerja senior yang terampil. Ketergantungan pada keterampikan pekerja akan menghambat keberlangsungan industry. Untuk mengatasi masalah tersebut, dicoba dikembangkan perangkat IoT yang mampu mengendalikan proses koagulasi pada pembuatan tahu. Sistem ini bekerja berdasarkan algoritma Fuzzy Mamdani yang akan mengolah input nilai suhu sari kedelai dan nilai PH cuka menjadi nlai PWM yang menjadi penentu kecepatan motor pengaduk larutan sari kedelai. Tingkat keberhasilan algoritma fuzzy menangani kondisi nyata yang bervariasi menjadi ukuran performanya. Pengujian dilakukan dengan sekenario menguji lansung dengan kondisi nyata sari kedelai dan cuka untuk diketahui tingkat keberhasilannya dalam melakukan pengendalian proses koagulasi pembuatan tahu. Sebanyak 30 percobaan hasil pengadukan didapati keseluruhan proses dinyatakan berhasil menggumpalkan sari kedelai pada kecepatan motor bervariasi sesuai kendali algoritma Fuzzy mamdani berdasarkan kondisi pH cuka dan suhu sari kedelai. Oleh karena itu penelitian ini menyimpulkan bahwa performa Algoritma Fuzzy mamdani dalam mengendaikan proses koagulasi pembuatan tahu melalui cara mengatur kecepatan pengadukan sebesar 100%. Temuan ini menjadi bukti penguat yang bisa dijadikan dasar bagi para peneliti bahwa algoritma fuzzy sekali lagi berhasil dijadikan rule pengendalian sebuah proses dengan hasil yang meyakinkan.
Downloads
References
B. Cui et al., “Developing radio frequency (RF) heating protocol in packed tofu processing by computer simulation,” Curr Res Food Sci, vol. 6, Jan. 2023, doi: 10.1016/j.crfs.2023.100474.
W. Lei et al., “Effect of ultrasound treatment on thawing process of frozen tofu prepared with different salt coagulants,” Ultrason Sonochem, vol. 99, Oct. 2023, doi: 10.1016/j.ultsonch.2023.106578.
R. D. Gagnon, M. È. Langevin, F. Lutin, and L. Bazinet, “Impact of nanofiltration pre-concentration prior to a combination of electrodialytic processes on the extraction of proteins from tofu whey,” Future Foods, vol. 8, Dec. 2023, doi: 10.1016/j.fufo.2023.100258.
F. Qiao et al., “Hydrothermal pretreatment of protein-rich substrate: Modified phsiochemical properties and consequent responses in its anaerobic digestion,” Carbon Resources Conversion, vol. 6, no. 1, pp. 1-10, Mar. 2023, doi: 10.1016/j.crcon.2022.10.001.
Y. Qiu et al., “Exploring a new technology for producing better-flavored HongJun Tofu, a traditional Neurospora-type okara food,” LWT, vol. 180, Apr. 2023, doi: 10.1016/j.lwt.2023.114700.
R. Tindjau, J. Y. Chua, and S. Q. Liu, “Growth and metabolic behavior of probiotic Bifidobacteria longum subsp. longum in minimally supplemented soy (tofu) whey,” Future Foods, vol. 8, Dec. 2023, doi: 10.1016/j.fufo.2023.100272.
S. Abadi and Fitriyani, “Detected The Sex Of Fish That Is Good For Cultivation Using Fuzzy,” bit-Tech, vol. 5, no. 2, pp. 113-120, Dec. 2022, doi: 10.32877/bt.v5i2.615.
A. Wijaya and Rino, “Flood Monitoring Early Warning System using Internet of Things-based Telegram,” bit-Tech, vol. 6, no. 3, pp. 281-286, Apr. 2024, doi: 10.32877/bt.v6i3.971.
A. Ade Sunarto, “Determination of Critical Servers by using Fuzzy Mamdani and Fuzzy Sugeno on PT. Samudera Indonesia Tbk,” Bit-Tech, vol. 1, no. 3, 2018, doi: 10.32877/bt.v1i3.
R. González et al., “Estimation of the density of veins from susceptibility-weighted imaging by using Mamdani fuzzy-type rule-based system. Investigating the neurovascular coupling in migraine,” Neuroimage Clin, vol. 39, Jan. 2023, doi: 10.1016/j.nicl.2023.103489.
H. Ouifak and A. Idri, “On the performance and interpretability of Mamdani and Takagi-Sugeno-Kang based neuro-fuzzy systems for medical diagnosis,” Sci Afr, vol. 20, Jul. 2023, doi: 10.1016/j.sciaf.2023.e01610.
S. Komsiyah, M. R. Ardyanti, and I. A. Iswanto, “Flood-Prone Susceptibility Analysis In Garut Using Fuzzy Inference System Mamdani Method,” in Procedia Computer Science, Elsevier B.V., 2023, pp. 912-921. doi: 10.1016/j.procs.2023.10.598.
D. M. Khojely, S. E. Ibrahim, E. Sapey, and T. Han, “History, current status, and prospects of soybean production and research in sub-Saharan Africa,” Jun. 01, 2018, Crop Science Society of China/ Institute of Crop Sciences. doi: 10.1016/j.cj.2018.03.006.
Y. Arii, Y. Sano, and K. Nishizawa, “Direct comparison of the tofu-like precipitate formation by adding different coagulants: magnesium chloride and glucono-lactone,” Heliyon, vol. 7, no. 6, Jun. 2021, doi: 10.1016/j.heliyon.2021.e07239.
A. Prasetyo, A. Fajaryanto, Y. Litanianda, A. R. Yusuf, M. B. Setyawan, and R. Rahmatika Az-Zahra, “Irigasi Tanaman Agriculture Dengan Logika Fuzzy Terintegrasi Internet of Things,” 2022.
L. S. Hwa and L. Te Chuan, “A Brief Review of Artificial Intelligence Robotic in Food Industry,” in Procedia Computer Science, Elsevier B.V., 2024, pp. 1694-1700. doi: 10.1016/j.procs.2024.01.167.
D. S. Rajput, G. Meena, M. Acharya, and K. K. Mohbey, “Fault prediction using fuzzy convolution neural network on IoT environment with heterogeneous sensing data fusion,” Measurement: Sensors, vol. 26, Apr. 2023, doi: 10.1016/j.measen.2023.100701.
R. Pratiwi, A. Waris, and S. Salengke, “Rancang Bangun Sistem Kendali Kecepatan Putaran Motor Dc Berbasis Logika Fuzzy Untuk Mesin Pengaduk Hasil Pertanian (Studi Kasus Pengadukan Biji Kedelai),” Jurnal Agritechno, pp. 44-55, May 2019, doi: 10.20956/at.v12i1.185.
S. H. Park, D. H. Kim, and S. C. Kim, “Recognition of IoT-based fire-detection system fire-signal patterns applying fuzzy logic,” Heliyon, vol. 9, no. 2, Feb. 2023, doi: 10.1016/j.heliyon.2023.e12964.
A. Prasetyo, A. R. Yusuf, Y. Litanianda, S. Sugianti, and F. Masykur, “Implementation of Fuzzy Logic for Chili Irrigation Integrated with Internet of Things,” Journal of Computer Networks, Architecture and High Performance Computing, vol. 5, no. 2, pp. 494-502, Jul. 2023, doi: 10.47709/cnahpc.v5i2.2518.
D. D. Patil, M. P. Lokhande, and N. M. Mule, “An intelligent system with fuzzy-based inference engine for secured tele-robotic surgery: Smart Fuzzy Inference engine for tele-robotic Surgery,” Healthcare Analytics, vol. 4, Dec. 2023, doi: 10.1016/j.health.2023.100264.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 bit-Tech
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
I hereby assign and transfer to bit-Tech all exclusive copyright ownership rights to the above work. This includes, but is not limited to, the right to publish, republish, downgrade, distribute, transmit, sell, or use the work and other related materials worldwide, in whole, or in part, in all languages, in electronic, printed, or any other form of media, now known or hereafter developed and reserves the right to permit or license a third party to do any of the above. I understand that this exclusive right will belong to bit-Tech from the date the article is accepted for publication. I also understand that bit-Tech, as the copyright owner, has sole authority to license and permit reproduction of the article. I understand that, except for copyright, any other proprietary rights associated with the work (e.g. patents or other rights to any process or procedure) must be retained by the author. In addition, I understand that bit-Tech permits authors to use their papers in any way permitted by the applied Creative Commons license.