Deteksi Code Smell dengan Pendekatan Machine Learning: Analisis Bibliometrik

Authors

    Ellysha Kusuma( 1 )

    (1) Universitas Buddhi Dharma

DOI:


https://doi.org/10.32877/bt.v7i2.1822

Keywords:


Analisis Bibliometrik, Code Smell Detection, Machine Learning , Nvivo , Perangkat Lunak

Abstract

Dalam pengembangan perangkat lunak, aspek efisiensi dan keberlanjutan sangat penting. Teknik refactoring digunakan untuk mengurangi dampak dari code smell yang merupakan bentuk technical debt akibat implementasi source code yang tidak mematuhi prinsip-prinsip rekayasa perangkat lunak. Tetapi proses refactoring membutuhkan biaya yang banyak. Oleh karena itu, code smell perlu dideteksi untuk mencegah dampak buruknya terhadap kualitas perangkat lunak. Dalam penelitian ini, pencarian jurnal dilakukan dengan tools Publish or Perish dengan kata kunci "Code Smell Detection". Terkumpul 200 jurnal yang terindeks Scopus, namun hanya 69 yang tersedia secara terbuka (open access). Analisis bibliometrik dalam penelitian ini menyajikan tinjauan literatur mengenai deteksi code smell dengan pendekatan machine learning. Penelitian ini memberikan wawasan mengenai kontribusi domain deteksi code smell. Hasil analisis menunjukkan bahwa institusi dari India menjadi penyumbang terbanyak penelitian dalam domain ini, diikuti oleh RRC dan Amerika Serikat. Penelitian ini banyak dilakukan pada tahun 2021, namun tren dalam domain ini mengalami penurunan pada tahun berikutnya. Dampak yang diberikan penelitian ini berupa potensi pengembangan alat deteksi code smell otomatis berbasis machine learning yang dapat mempercepat proses identifikasi masalah kode dalam proses pengembangan perangkat lunak. Dengan teknologi ini, pengembang dapat meningkatkan efisiensi dalam menemukan code smell sehingga dapat mengurangi biaya pemeliharaan perangkat lunak. Jenis publikasi yang paling banyak adalah dalam bentuk artikel sebanyak 40 publikasi. Melalui pembentukan word cloud dengan software NVivo, kata code, smells dan software adalah kata yang sering dipakai. Lalu untuk kata kunci yang terdeteksi melalui software VOSviewer, kata-kata code smell detection, detection, code, machine, dan method memiliki keterkaitan satu sama lain.

Downloads

Download data is not yet available.

References

M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, “Machine learning techniques for code smell detection: A systematic literature review and meta-analysis,” Information and Software Technology, vol. 108, pp. 115–138, Apr. 2019, doi: 10.1016/j.infsof.2018.12.009.

M. De Stefano, F. Pecorelli, F. Palomba, and A. De Lucia, “Comparing within- and cross-project machine learning algorithms for code smell detection,” in Proceedings of the 5th International Workshop on Machine Learning Techniques for Software Quality Evolution, Athens Greece: ACM, Aug. 2021, pp. 1–6. doi: 10.1145/3472674.3473978.

S. Dewangan, R. S. Rao, A. Mishra, and M. Gupta, “Code Smell Detection Using Ensemble Machine Learning Algorithms,” Applied Sciences, vol. 12, no. 20, p. 10321, Oct. 2022, doi: 10.3390/app122010321.

A. Ho, A. M. T. Bui, P. T. Nguyen, and A. Di Salle, “Fusion of deep convolutional and LSTM recurrent neural networks for automated detection of code smells,” in Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering, Oulu Finland: ACM, Jun. 2023, pp. 229–234. doi: 10.1145/3593434.3593476.

M. Y. Mhawish and M. Gupta, “Predicting Code Smells and Analysis of Predictions: Using Machine Learning Techniques and Software Metrics,” J. Comput. Sci. Technol., vol. 35, no. 6, pp. 1428–1445, Nov. 2020, doi: 10.1007/s11390-020-0323-7.

X. Yu, F. Li, K. Zou, J. Keung, S. Feng, and Y. Xiao, “On the Relative Value of Imbalanced Learning for Code Smell Detection,” Jan. 10, 2023. doi: 10.22541/au.167338512.23766841/v1.

T. Sharma and D. Spinellis, “A survey on software smells,” Journal of Systems and Software, vol. 138, pp. 158–173, Apr. 2018, doi: 10.1016/j.jss.2017.12.034.

P. Kokol, M. Zorman, G. Zlahtic, and B. Žlahtivc, “Code smells,” ArXiv, vol. abs/1802.06063, 2018, [Online]. Available: https://api.semanticscholar.org/CorpusID:3377287

P. Kokol and M. Kokol, “Code smells: A Synthetic Narrative Review”.

K. Beck, Kent Beck’s guide to better Smalltalk: a sorted collection, vol. 14. Cambridge University Press, 1999.

M. Fowler, “Refactoring.,” presented at the TOOLS (34), 2000, p. 437.

T. Lewowski and L. Madeyski, “How far are we from reproducible research on code smell detection? A systematic literature review,” Information and Software Technology, vol. 144, p. 106783, Apr. 2022, doi: 10.1016/j.infsof.2021.106783.

J. P. dos Reis, F. B. e Abreu, G. de F. Carneiro, and C. Anslow, “Code smells detection and visualization: A systematic literature review,” Arch Computat Methods Eng, vol. 29, no. 1, pp. 47–94, Jan. 2022, doi: 10.1007/s11831-021-09566-x.

S. Dewangan, R. S. Rao, A. Mishra, and M. Gupta, “A Novel Approach for Code Smell Detection: An Empirical Study,” IEEE Access, vol. 9, pp. 162869–162883, 2021, doi: 10.1109/ACCESS.2021.3133810.

S. Lu, N. Duan, H. Han, D. Guo, S. Hwang, and A. Svyatkovskiy, “ReACC: A Retrieval-Augmented Code Completion Framework,” Mar. 15, 2022, arXiv: arXiv:2203.07722. Accessed: Nov. 18, 2024. [Online]. Available: http://arxiv.org/abs/2203.07722

D. Životin, “Shotgun Surgery Bad Smell Detection in IEC 61499”.

H. Singh and S. I. Hassan, “Effect of SOLID Design Principles on Quality of Software: An Empirical Assessment,” vol. 6, no. 4, 2015.

S. Kelly and R. Pohjonen, “Worst Practices for Domain-Specific Modeling,” IEEE Softw., vol. 26, no. 4, pp. 22–29, Jul. 2009, doi: 10.1109/MS.2009.109.

A. Bing, “KISS: Keep It Simple, Stupid!”.

“Code Quality Tool & Secure Analysis with SonarQube.” Accessed: Nov. 18, 2024. [Online]. Available: https://www.sonarsource.com/products/sonarqube/

R. N. Broadus, “Toward a definition of ‘bibliometrics,’” Scientometrics, vol. 12, no. 5–6, pp. 373–379, Nov. 1987, doi: 10.1007/BF02016680.

M. S. Kavic and R. M. Satava, “Scientific Literature and Evaluation Metrics: Impact Factor, Usage Metrics, and Altmetrics,” JSLS, vol. 25, no. 3, p. e2021.00010, 2021, doi: 10.4293/JSLS.2021.00010.

A.-W. Harzing -, “Publish or Perish,” Harzing.com. Accessed: Nov. 18, 2024. [Online]. Available: https://harzing.com/resources/publish-or-perish

“NVivo Leading Qualitative Data Analysis Software (QDAS) by Lumivero,” Lumivero. Accessed: Nov. 18, 2024. [Online]. Available: https://lumivero.com/products/nvivo/

N. J. van Eck and L. Waltman, “VOSviewer Manual”.

J. Wang, J. Zhao, S. Guo, C. North, and N. Ramakrishnan, “ReCloud: Semantics-Based Word Cloud Visualization of User Reviews,” in Graphics Interface 2014, 1st ed., P. G. Kry and A. Bunt, Eds., A K Peters/CRC Press, 2020, pp. 151–158. doi: 10.1201/9781003059325-20.

H. Liu, J. Jin, Z. Xu, Y. Bu, Y. Zou, and L. Zhang, “Deep Learning Based Code Smell Detection,” IIEEE Trans. Software Eng., pp. 1–1, 2021, doi: 10.1109/TSE.2019.2936376.

T. Sharma, V. Efstathiou, P. Louridas, and D. Spinellis, “Code smell detection by deep direct-learning and transfer-learning,” Journal of Systems and Software, vol. 176, p. 110936, Jun. 2021, doi: 10.1016/j.jss.2021.110936.

F. Palomba, D. Andrew Tamburri, F. Arcelli Fontana, R. Oliveto, A. Zaidman, and A. Serebrenik, “Beyond Technical Aspects: How Do Community Smells Influence the Intensity of Code Smells?,” IIEEE Trans. Software Eng., vol. 47, no. 1, pp. 108–129, Jan. 2021, doi: 10.1109/TSE.2018.2883603.

A. Alazba and H. Aljamaan, “Code smell detection using feature selection and stacking ensemble: An empirical investigation,” Information and Software Technology, vol. 138, p. 106648, Oct. 2021, doi: 10.1016/j.infsof.2021.106648.

S. Jain and A. Saha, “Improving performance with hybrid feature selection and ensemble machine learning techniques for code smell detection,” Science of Computer Programming, vol. 212, p. 102713, Dec. 2021, doi: 10.1016/j.scico.2021.102713.

Z. Li and W. Shang, “Studying Duplicate Logging Statements and Their Relationships with Code Clones”.

A. AbuHassan, M. Alshayeb, and L. Ghouti, “Software smell detection techniques: A systematic literature review,” J Software Evolu Process, vol. 33, no. 3, p. e2320, Mar. 2021, doi: 10.1002/smr.2320.

Downloads

Published

2024-12-27

How to Cite

[1]
E. Kusuma, “Deteksi Code Smell dengan Pendekatan Machine Learning: Analisis Bibliometrik”, bit-Tech, vol. 7, no. 2, pp. 366–376, Dec. 2024.

Issue

Section

Articles
DOI : https://doi.org/10.32877/bt.v7i2.1822
Abstract views: 13 / PDF downloads: 8