Analisa Klasifikasi Penyakit Diabetes dengan Algoritma Neural Network
DOI:
https://doi.org/10.32877/bt.v6i3.1161
Keywords:
Diabetes, Fine tunning , Hiden layer, Minmax.scaler, Neural Network
Abstract
Metode yang populer dan efektif untuk mengidentifikasi dan klasifikasi diabetes adalah algoritma deep learning untuk klasifikasi dataset diabetes. Algoritma deep learning, terutama jaringan saraf tiruan juga dikenal sebagai neural networks telah terbukti sangat efektif dalam menangani tugas klasifikasi data medis, seperti diabetes. Dalam penelitian sebelumnya, algoritma neural network digunakan untuk mengklasifikasikan penyakit diabetes , tetapi nilai akurasinya masih di bawah 80,5%. Karena nilai akurasi masih kurang maksimal, penelitian ini bertujuan untuk meningkatkannya. Penggunaan metode pemrosesan yang lebih akurat, fine tuning hyperparameter, untuk memastikan data sudah normal pada setiap fitur yaitu dengan metode normalisasi standard, kemudian menambahkan hiden layer sebanyak 2 layer dengan harapan mempelajari klasifikas yang tidak bisa dipisahkan secara linier. Dalam penelitian ini, beberapa langkah pembaharuan dilakukan selain besaran hiden layer juga besaran test size. Pembaruan ini bertujuan untuk meningkatkan akurasi yang lebih besar, serta hasil yang lebih baik untuk presisi, recall dan F1. Artikel ini menggunakan data umum atau sekunder dari laman Kaggle. Penelitian ini dilakukan untuk meningkatkan pengetahuan tentang cara mencegah diabetes. Gejala penyakit ini termasuk kadar gula sewaktu lebih dari 200 mg/dl dan kadar gula puasa lebih dari 126.mg/dl, antara tahun 1998 dan 2014, Badan Kesehatan Dunia melaporkan peningkatan dramatis dalam jumlah kasus diabetes di seluruh dunia, dari 108 juta menjadi 422 juta.
Downloads
References
J Elflein dan (2019). “Number of people with diabetes, by country 2019 ,”https://www.statista.com/statistics/281082/countries-with-, 2021.
H. Nurhayati-Wolff dan (2020), “Projected number of people withdiabetes, ”[Online],https://www.statista.com/statistics/1052625/indonesia-diabetes-projection/, 2021.
L.V.R. Kumari dan dkk, “Machine Learning based Diabetes Detection,” Proc. 6th Int. Conf. Commun. Electron. Syst (ICCES 2021), pp. 1-5, 2021.
N. Abdulhadi dan A. Al-Mousa, “Diabetes Detection Using Machine Learning Classification Methods,” Proc. 2021 Int. Conf. Inf. Technol. ICIT 2021, p. 350–354, 2021.
Bhoi, S. K, “Prediction of Diabetes in Females of Pima Indian Heritage: A Complete,” Turkish Journal of Computer and Mathematics Education, vol. 12, pp. 3074-3084, 2021
Agatsa, D. A, Rismala, R dan Wisesty, U. N, “Klasifikasi Pasien Pengidap Diabetes Menggunakan Metode Support Vector Machine,” eProceedings of Engineering, vol. 7, 2018
Sisodia, D. dan Sisodia, D. S, “Prediction of diabetes using classification algorithms,” Procedia computer science, vol. 132, pp. 1578-1585, 2018.
Maulidina, F, Rustam, Z, Hartini, S, Wibowo, V. V. P, Wirasati, I dan Sadewo, W, “Feature optimization using Backward Elimination and Support Vector Machines,” In Journal of Physics: Conference Series, vol. 1821, p. 012006, 2021.
Daanouni, O, Cherradi, B dan Tmiri, A, “Predicting diabetes diseases using mixed data and supervised machine learning algorithms,” In Proceedings of the 4th International Conference on Smart City Applications, pp. 1-6, 2019.
S. Mishra, R. Sachan dan D. Rajpal, “Deep Convolutional Neural Network based Detection System for Real-time Corn Plant Disease Recognition,” Procedia Comput. Sci, vol. 167, pp. 2003-2010, 2020.
A. D. Association, “Diabetes Overview The path to understanding diabetes starts here,” [Online], https://www.diabetes.org/diabetes, 2021.
S. Yezli, Y. Yassin, A. Mushi, B. Balkhi dan A. Khan, “Insulin Knowledge , Handling , and Storage among Diabetic Pilgrims during the Hajj Mass Gathering,” Journal of Diabetes Research, 2021
Punthakee, Z., Goldenberg, R dan Katz, P, “Definition, Classification and Diagnosis of Diabetes, Prediabetes and Metabolic Syndrome,” Canadian Journal of Diabetes, vol. 42, p. S10–S15, 2018.
Azhari, M, Situmorang, Z dan Rosnelly, R., “Perbandingan Akurasi, Recall dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,” Media Informatika Budidarma, vol. 5, p. 640–651, 2021.
T Ciu dan R. S. Oetama, “Logistic Regression Prediction Model for Cardiovascular Disease,” IJNMT (Int. J. New Media Technol.), vol. 7, p. 33–38, 2020.
R. Thammasudjarit dan dkk, “Comparison of Machine Learning with Logistic Regression for Prediction of Chronic Kidney Disease in the Thai Adult Population,” Ramathibodi Med. J, vol. 44, pp. 1-12, 2021
S. Nusinovici dan dkk, “Logistic Regression was As Good As Machine Learning for Predicting Major Chronic Diseases,” J. Clin. Epidemiol, vol. 122, p. 56–69, 2020
Chan, A. S, “Prediksi Kedatangan Wisatawan Pada Pariwisata Kota Batam Dengan Menggunakan Teknik Knowledge Data Discovery,” Jurnal Ilmiah Informatika, pp. 6-11, 2018
Mardi, Y, “Klasifikasi Menggunakan Algoritma C4.5,” Edik Informatika, vol. 2, 2018
Fitriyani., & dan Siallagan, R. A, “Prediksi Penyakit Diabetes Mellitus,” Jurnal Responsif, vol. 3, pp. 45-46, 2021
Utomo, D. P., & Mesran, M, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” Jurnal Media Informatika Budidarma, vol. 4, p. 440, 2020
Nasution, M. Z. F., Sitompul, O. S., & Ramli, M, “PCA based feature reduction to improve the accuracy of decision tree c4.5 classification,” Journal of Physics Conference Series, vol. 978, 2018
D Y Utami, E Nurlelah dan F N Hasan, “Comparison of Neural Network Algorithms, Naive Bayes and Logistic Regression to Find the Highest Accuracy in Diabetes,” J. Inform. Telecommun, vol. 1, pp. 152-159, 2021
D S Nusinovice, “Logistic Regression was good as machine learning for predicting Major Chronic Diseases,” J.Clin Epidemiol, vol. 122, pp. 56-69, 2020
Alsalman Y S, Khamees Abu Halemah N, Alnagi E S dan Salameh W, “Using Decision Tree and Arficial Neural Network to PredictStudents Academic Performance,” Conference onInformaon and Communicaon Systems ICICS 2019, pp. 104-109, 2019.
N Varshey dan A. Sharma, “Identification and Prediction of Liver Disease Using Logistic Regression,” Eur. J. Mol. Clin. Med, vol. 7, pp. 106-110, 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 bit-Tech : Binary Digital - Technology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
I hereby assign and transfer to bit-Tech all exclusive copyright ownership rights to the above work. This includes, but is not limited to, the right to publish, republish, downgrade, distribute, transmit, sell, or use the work and other related materials worldwide, in whole, or in part, in all languages, in electronic, printed, or any other form of media, now known or hereafter developed and reserves the right to permit or license a third party to do any of the above. I understand that this exclusive right will belong to bit-Tech from the date the article is accepted for publication. I also understand that bit-Tech, as the copyright owner, has sole authority to license and permit reproduction of the article. I understand that, except for copyright, any other proprietary rights associated with the work (e.g. patents or other rights to any process or procedure) must be retained by the author. In addition, I understand that bit-Tech permits authors to use their papers in any way permitted by the applied Creative Commons license.