Evaluation of Distance Measurement Using Complete Linkage Method


    Fibia Sentauri Cahyaningrum( 1 ) Isna Ayu Safitri Kusuma Dewi( 2 ) Nola Riwibowo( 3 ) Taruna Firlian Tama( 4 )

    (1) Institut Teknologi dan Bisnis Ahmad Dahlan Lamongan
    (2) Institut Teknologi dan Bisnis Ahmad Dahlan Lamongan
    (3) Institut Teknologi dan Bisnis Ahmad Dahlan Lamongan
    (4) Institut Teknologi dan Bisnis Ahmad Dahlan Lamongan




Complete Linkage Method, Canberra Metric, Czekanowski Coefficient, Euclidean Distance


Cluster analysis is the process of grouping a number of objects based on information obtained from data that explains the relationship between objects with the principle of maximizing similarities between members of one cluster and minimizing similarities between clusters. Cluster analysis is useful for identifying objects (recognition), supporting decision-making systems, and data mining. Cluster analysis consists of hierarchical (Average Linkage, Single Linkage, Complete Linkage, Ward's, and Centroid) and non-hierarchical (K-Means) methods. Each method generally has advantages and disadvantages. Apart from that, there are several distance measures that are commonly used in the grouping process, such as Euclidean, Canberra Metric, Czekanowski Coefficient, and others. In general, researchers will choose one or several cluster analysis methods as a comparison and a certain distance measure to be applied to the data in order to group objects based on certain criteria. In this research, a study and evaluation of Euclidean distance measures, Canberra Metric, and Czekanowski Coefficient were carried out using the Complete Linkage method based on simulated data. The conclusion obtained from evaluating measures of object similarity, namely Euclidean distance, Canberra Metric, and Czekanowski Coefficient by applying the Complete Linkage method, concluded that Euclidean distance is better used as a measure of object similarity in grouping cases compared to Canberra Metric and Czekanowski Coefficient.


Download data is not yet available.


“Practical Multivariate Analysis - Abdelmonem Afifi, Susanne May, Robin Donatello, Virginia A. Clark - Google Buku.” https://books.google.co.id/books?hl=id&lr=&id=D5K3DwAAQBAJ&oi=fnd&pg=PP1&dq=multivariate+analysis&ots=vU-LkLdOhc&sig=oIjlZAGGIVWQU9Pc6b6dx5kGm44&redir_esc=y#v=onepage&q=multivariate analysis&f=false (accessed Dec. 05, 2023).

“Approaching Multivariate Analysis, 2nd Edition: A Practical Introduction - Pat Dugard, John Todman, Harry Staines - Google Buku.” https://books.google.co.id/books?hl=id&lr=&id=5hh1EAAAQBAJ&oi=fnd&pg=PP1&dq=multivariate+analysis&ots=IsLcpTLwkJ&sig=tqhp_THm7ZOOp6O4NanF53HlyfE&redir_esc=y#v=onepage&q=multivariate analysis&f=false (accessed Dec. 05, 2023).

“Model-Based Clustering and Classification for Data Science: With ... - Charles Bouveyron, Gilles Celeux, T. Brendan Murphy, Adrian E. Raftery - Google Buku.” https://books.google.co.id/books?hl=id&lr=&id=ldGoDwAAQBAJ&oi=fnd&pg=PR15&dq=multivariate+analysis+of+cluster+analysis+complete+linkage&ots=6Mh5-zLn4n&sig=jrMIWAMC5lT1jXA8DnUzdDtpFJU&redir_esc=y#v=onepage&q=multivariate analysis of cluster analysis complete linkage&f=false (accessed Dec. 05, 2023).

A. Kassambara, “Multivariate Analysis I Practical Guide To Cluster Analysis in R Unsupervised Machine Learning”, Accessed: Nov. 20, 2023. [Online]. Available: http://www.sthda.com

B. S. Everitt, S. Landau, and M. Leese, “Cluster Analysis Arnold,” A Memb. Hodder Headl. Group, London, p. 237, 2001, Accessed: Nov. 20, 2023. [Online]. Available: https://books.google.com/books/about/Cluster_Analysis.html?hl=id&id=htZzDGlCnQYC

R. Scitovski, K. Sabo, F. Martínez-Álvarez, and Š. Ungar, “Cluster Analysis and Applications,” Clust. Anal. Appl., pp. 1–271, Jan. 2021, doi: 10.1007/978-3-030-74552-3/COVER.

A. Jaeger and D. Banks, “Cluster analysis: A modern statistical review,” Wiley Interdiscip. Rev. Comput. Stat., vol. 15, no. 3, p. e1597, May 2023, doi: 10.1002/WICS.1597.

A. Fikri, B. F. Hutabarat, and U. Khaira, “Komparasi K-Means Clustering Dan Complete Linkage Dalam Pengelompokan Penyaluran Pinjaman Financial Technology,” J. Ilm. Media Sisfo, vol. 17, no. 2, pp. 228–239, Oct. 2023, doi: 10.33998/MEDIASISFO.2023.17.2.1373.

Y. Reinaldi, N. Ulinnuha, T. Hartono, and M. Hafiyusholeh, “Comparison of Single Linkage, Complete Linkage, and Average Linkage Methods on Community Welfare Analysis in Cities and Regencies in East Java,” J. Mat. Stat. dan Komputasi, vol. 18, no. 1, pp. 130–140, Sep. 2021, doi: 10.20956/J.V18I1.14228.

S. Thaib and R. D. Bekti, “PENERAPAN ANALISIS KLUSTER HIERARKI MENGGUNAKAN METODE AVERAGE, SINGLE, DAN COMPLETE LINKAGE PADA DATA PASIEN COVID-19 DI INDONESIA (Studi Kasus : Data IHSG Tahun 2016 – 2021),” J. Stat. Ind. dan Komputasi, vol. 7, no. 2, pp. 23–30, 2022, Accessed: Nov. 20, 2023. [Online]. Available: https://ejournal.akprind.ac.id/index.php/STATISTIKA/article/view/4389

D. Amelia, G. Kholijah, F. Sains dan Teknologi, and U. Jambi, “Analisis Cluster Pengelompokan Provinsi di Indonesia Berdasarkan Sub Sektor Nilai Tukar Petani,” J. Demogr. Ethnogr. Soc. Transform., vol. 3, no. 1, pp. 1-12, Jun. 2023, doi: 10.30631/DEMOS.V3I1.1812.

N. Ulinnuha and R. Veriani, “Analisis Cluster dalam Pengelompokan Provinsi di Indonesia Berdasarkan Variabel Penyakit Menular Menggunakan Metode Complete Linkage, Average Linkage dan Ward,” InfoTekJar J. Nas. Inform. dan Teknol. Jar., vol. 5, no. 1, pp. 102–108, Sep. 2020, doi: 10.30743/INFOTEKJAR.V5I1.2464.

S. F. Mu’afa and N. Ulinnuha, “Perbandingan Metode Single Linkage, Complete Linkage Dan Average Linkage dalam Pengelompokan Kecamatan Berdasarkan Variabel Jenis Ternak Kabupaten Sidoarjo,” Inf. J. Ilm. Bid. Teknol. Inf. dan Komun., vol. 4, no. 2, 2019, doi: 10.25139/inform.v4i2.1696.

A. L. Scutariu, Stefanita Susu, C. E. Huidumac-Petrescu, and R. M. Gogonea, “A Cluster Analysis Concerning the Behavior of Enterprises with E-Commerce Activity in the Context of the COVID-19 Pandemic,” J. Theor. Appl. Electron. Commer. Res. 2022, Vol. 17, Pages 47-68, vol. 17, no. 1, pp. 47-68, Dec. 2021, doi: 10.3390/JTAER17010003.

P. Giordani, M. B. Ferraro, and F. Martella, “An Introduction to Clustering with R,” vol. 1, 2020, doi: 10.1007/978-981-13-0553-5.




How to Cite

F. S. Cahyaningrum, I. A. S. K. Dewi, N. Riwibowo, and T. F. Tama, “Evaluation of Distance Measurement Using Complete Linkage Method”, bit-Tech, vol. 6, no. 2, pp. 167–175, Dec. 2023.



DOI : https://doi.org/10.32877/bt.v6i2.1045
Abstract views: 18 / PDF downloads: 19