
Bit-Tech (Binary Digital - Technology) 
Vol.6, No.2, December 2023 

Available online at: http://jurnal.kdi.or.id/index.php/bt 

 

ISSN 2622-2728 (online) 2622-271X (print) © 2018 The Authors. Published by Komunitas Dosen Indonesia.  
This is an open access article under the CC BY-SA 4.0 license (http://creativecommons.org/licenses/by/4.0/) 

doi: 10.32877/bt.v6i2.1045 

Evaluation of Distance Measurement Using 

Complete Linkage Method 
 

Fibia Sentauri Cahyaningrum1)*, Isna Ayu Safitri Kusuma Dewi2), Nola Riwibowo3), Taruna 

Firlian Tama4) 

1)2)3)4)Institut Teknologi dan Bisnis Ahmad Dahlan Lamongan 

Jl. KH. Ahmad Dahlan 41, Lamongan, Indonesia 
1)fibiasenta22@gmail.com 

2)isnayuskd@gmail.com 

3)n.riwibowo@gmail.com 

4)tarunafirliantama@gmail.com 

Article history: 

 
Received 01 Dec 2023; 

Revised 05 Dec 2023; 

Accepted 06 Dec 2023; 
Available online 28 Dec 2023 

 

Keywords: 

 
Complete Linkage Method 

Canberra Metric  

Czekanowski Coefficient 
Euclidean Distance  

Hierarchical Method 

Abstract 

 

Cluster analysis is the process of grouping a number of objects based on 

information obtained from data that explains the relationship between objects 

with the principle of maximizing similarities between members of one cluster 

and minimizing similarities between clusters. Cluster analysis is useful for 

identifying objects (recognition), supporting decision-making systems, and data 

mining. Cluster analysis consists of hierarchical (Average Linkage, Single 

Linkage, Complete Linkage, Ward's, and Centroid) and non-hierarchical (K-

Means) methods. Each method generally has advantages and disadvantages. 

Apart from that, there are several distance measures that are commonly used in 

the grouping process, such as Euclidean, Canberra Metric, Czekanowski 

Coefficient, and others. In general, researchers will choose one or several cluster 

analysis methods as a comparison and a certain distance measure to be applied 

to the data in order to group objects based on certain criteria. In this research, a 

study and evaluation of Euclidean distance measures, Canberra Metric, and 

Czekanowski Coefficient were carried out using the Complete Linkage method 

based on simulated data. The conclusion obtained from evaluating measures of 

object similarity, namely Euclidean distance, Canberra Metric, and 

Czekanowski Coefficient by applying the Complete Linkage method, concluded 

that Euclidean distance is better used as a measure of object similarity in 

grouping cases compared to Canberra Metric and Czekanowski Coefficient. 

  

I. INTRODUCTION 

Cluster analysis is a multivariate technique that aims to group objects based on their similar characteristics. 

The characteristics of objects in a group have a high level of similarity, while the characteristics of objects in one 

group and other groups have a low level of similarity. In other words, diversity within a group is minimum, while 

diversity between groups is maximum [1]–[4]. 

Cluster analysis methods are divided into two, namely hierarchical methods and non-hierarchical methods. 

Hierarchical method, is a method that creates a hierarchical decomposition (levels) of a data set or object in a 

structured manner based on similarities in their properties and the number of desired clusters is not yet known, 

usually displayed in the form of a dendrogram to make the hierarchy process easier. The examples of hierarchical 

methods include Single Linkage, Complete Linkage, Average Linkage, Ward’s Method, and Centroid Method. 

Meanwhile, non-hierarchical methods are used to group objects where the number of clusters to be formed can be 

determined first as part of the clustering procedure. An example of a non-hierarchical method that is most often 

used is the K-Means method [5]. 

In applying cluster analysis, researchers can select relevant variables according to the purpose of grouping. 

For example, if a researcher wants to know how districts/cities in East Java are grouped based on success in the 

health sector, the variables that can be used include the Infant Mortality Rate (IMR), the percentage of 

malnutrition, the percentage of health workers to the total population, and others [6], [7]. 

In various studies, researchers generally use several cluster analysis methods to apply to data, then choose 

which method produces the best cluster analysis based on the validity value. In addition, researchers determine 
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the distance measure first that will be used in calculating the cluster analysis method without comparing it with 

other distance measures. Therefore, in this research, a study and evaluation of Euclidean distance measures, 

Canberra Metric, and Czekanowski Coefficient will be carried out using the Complete Linkage method. 

II. RELATED WORKS/LITERATURE REVIEW 

Much research has been conducted on the application of various cluster analysis methods to real data. Akmal 

Fikri, et al have conducted research entitled Comparison of K-Means Clustering and Complete Linkage in 

Grouping Financial Technology Loan Distribution showing that the K-Means method is able to form an optimal 

number of clusters better than Complete Linkage based on the DBI value [8]. Yanuwar Reinaldi, et al researched 

the Comparison of Single Linkage, Complete Linkage, and Average Linkage Methods on Community Welfare in 

East Java, showing that the Average Linkage method provided the best grouping results based on the Silhouette 

Index [9]. Susiana Thaib, et al conducted research entitled Application of Hierarchical Cluster Analysis Using 

Average, Single, and Complete Linkage Methods on COVID-19 Patient Data in Indonesia (Case Study: IHSG 

Data 2016-2021) showing that the Average Linkage method is the best method for conducting grouping based on 

Cophenetic correlation values [10]. 

The research entitled Cluster Analysis for Grouping Provinces in Indonesia based on The Farmer Exchange 

Rate Sub-sector was carried out by Dwi Amelia, et al using the Single Linkage, Complete Linkage, and Average 

Linkage methods, showing that the Average Linkage method is the best method based on Cophenetic correlation 

values [11]. Furthermore, Nurissaidah Ulinnuh, et al conducted research entitled Cluster Analysis in Grouping 

Provinces in Indonesia Based on Infectious Disease Variables Using the Complete Linkage, Average Linkage, 

and Ward's Methods showing that the Ward's Method is the best method based on the standard deviation value in 

the group [12]. Research entitled Comparison of Single Linkage, Complete Linkage, and Average Linkage 

Methods in Grouping Districts Based on Livestock Type Variables in Sidorjao Regency by Sulthan Fikri Mu'afa, 

et al shows that the Complete Linkage method is the best method based on the standard deviation ratio Sw to Sb 

[13]. 

Based on several studies above, it shows that each data case provides different conclusions regarding the 

selection of the best cluster method. Therefore, we can conclude that data distribution influences the selection of 

the best cluster method. Apart from that, the choice of distance measure at the grouping stage also needs to be 

considered because the results of the distance calculation are thought to influence the results of selecting the best 

cluster method. 

III. METHODS 

A. Object Grouping Method 

Common methods used in grouping objects are hierarchical methods and non-hierarchical methods. The 

following is an explanation of the object grouping method. 

1) Hierarchical Method 

Hierarchical grouping/clustering is used to group objects in a structured manner based on similar properties and 

the number of groups formed is not yet known. There are two ways to get groups using the hierarchical method, 

namely merging and separating groups. Merger is obtained by gradually combining objects or groups that are 

similar so that in the end a new group is obtained. On the other hand, the separation method starts from a large 

group consisting of all observation objects, then the objects with the highest dissimilarity values are separated, 

and so on until it is found that diversity within a group is minimum, while diversity between groups is maximum. 

Examples of hierarchical methods by combining are Single Linkage, Complete Linkage, Average Linkage, and 

Ward's. Meanwhile, examples of hierarchical methods using separation are Splinter Average Distance and 

Automatic Interaction Detection (AID) [14]. 

2) Non-Hierarchical Method 

Non-hierarchical grouping/clustering is a method of grouping objects in which the desired number of groups is 

determined first. The first step of the non-hierarchical cluster method is to select a group as the initial central 

group and all objects with the closest distance are placed in the cluster that has been formed. The next step is to 

select a new group and continue placing objects until all objects belong to a group with high similarity. 

This research will focus on the hierarchical cluster method, namely the Complete Linkage method. 

B. Complete Linkage Method 

The Complete Linkage method is a hierarchical cluster method where the distance between clusters is 

determined from the farthest distance between two objects in different groups. This method can be used well in 

cases where the objects are from completely different groups. 

The first step that must be taken is to calculate the distance between two objects (𝑑𝑖𝑗) as a measure of similarity. 

The distance measure for calculating the similarity between two objects will be explained in the next sub-chapter. 

The second step is to find the shortest distance between two objects, then combine the two objects into one new 
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group. For example, the two objects are denoted by group U and group V to get a combined group, namely (UV). 

Next, to calculate the group distance (UV) with other groups, it is formulated using the following equation (1) 

[14], [15]. 

 

𝑑(𝑈𝑉)𝑊 = max(𝑑𝑈𝑊 , 𝑑𝑉𝑊)            (1) 

 

where 𝑑𝑈𝑊  and 𝑑𝑉𝑊  describe the furthest distance between groups U and W and V and W. 

C. Measures of Object Similarity 

The following is a description of distance measures that are often used to describe similarities between objects. 

1) Euclidean 

Euclidean is the most commonly chosen distance measure to measure similarity between objects. The Euclidean 

distance between two objects of dimension p where 𝐱′ = [𝑥1, 𝑥2, … , 𝑥𝑝] and 𝐲′ = [𝑦1, 𝑦2, … , 𝑦𝑝] is shown in 

equation (2) 

 

𝑑(𝐱, 𝐲) = √(𝑥1 − 𝑦1)
2 + (𝑥2 − 𝑦2)

2 +⋯+ (𝑥𝑝 − 𝑦𝑝)
2
       (2) 

𝑑(𝐱, 𝐲) = √(𝐱 − 𝐲)′(𝐱 − 𝐲) 

 

Euclidean distance is usually calculated from raw data or not from standard data. The advantage of Euclidean 

distance is that the distance between two objects is not affected by the addition of new objects to be analyzed, 

which may be outliers. Meanwhile, the disadvantage of Euclidean distance is that the distance can be very large 

due to differences in scale. For example, if a dimension is measured in cm distance units, and converted in mm 

(by multiplying the value by 10), the results of the Euclidean distance can be very different, so the results of the 

cluster analysis may be different. 

2) Canberra Metric 

Canberra distance is the number of absolute difference values between objects for each variable divided by the 

number of variable values between objects. This addition continues up to the number of variables used for 

grouping. This distance is expressed in equation (3) 

 

𝑑(𝐱, 𝐲) = ∑
|𝑥𝑖−𝑦𝑖|

(𝑥𝑖+𝑦𝑖)

𝑝
𝑖=𝑖              (3) 

 

The Canberra distance measure is only used for variables that have positive values. The advantage of the 

Canberra distance is that this measure can anticipate if some of the variables used have a long range of values. 

Meanwhile, the disadvantage of Canberra Metric is that the distance between two objects will be affected when 

new objects are added which may be outliers. 

3) Czekanowski Coefficient 

The Czekanowski distance is the difference between one and two times the minimum value of one variable and 

another variable divided by the sum between the following two variables. This distance can be formulated in 

equation (4) 

 

𝑑(𝐱, 𝐲) = 1 −
2∑ min(𝑥𝑖,𝑦𝑖)

𝑝
𝑖=1

∑ (𝑥𝑖+𝑦𝑖)
𝑝
𝑖=1

            (4) 

 

The Czekanowski distance measure is also only used for variables that have positive values. The advantages 

and disadvantages of the Czekanowski Coefficient similarity measure are the same as the Canberra Metric. 

D. Best Group Comparison Criteria 

One of the best criteria for comparing groups is to use the Agglomeration Coefficient (AC). For example, given 

𝑑(𝑖) is the distance of the ith object to the first group formed divided by the distance of the ith object to the last 

formed group. Then the Agglomeration Coefficient is the average of all possible 1 − 𝑑(𝑖)  with 0 < AC < 1. If 

AC approaches the value 1, then the grouping formed is getting better, that is, the diversity of objects within the 

group is minimum, while the diversity between groups is maximum. On the other hand, if AC approaches 0, then 

the groupings formed are increasingly poor, so that the diversity of objects in the group is large. 
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IV. RESULTS 

A. Example of Calculation of Euclidean Distance, Canberra Metric, and Czekanowski Coefficient 

For example, given data consisting of 5 observations with two relevant variables to group these observations. 

The data is given in Table 1. 
TABLE 1 

EXAMPLE DATA FOR CALCULATING DISTANCE MEASURESS 

Observation X1 X2 

A 1 2 

B 3 1 

C 3 5 

D 4 9 

E 5 7 

Graphically, the observations in Table 1 can be visualized using a scatter plot as in Fig. 1.  

 

Fig. 1 Scatter Plot of Example Data 

 

Next, we will give examples of how to calculate Euclidean, Canberra Metric, and Czekanowski Coefficient 

distances between observations. 

1) Euclidean Distance 

The following is how to calculate Euclidean distance by referring to Equation (2) 

 

𝑑𝐴𝐵 = √(1 − 3)2 + (2 − 1)2 = √5 = 2.236 

𝑑𝐴𝐶 = √(1 − 3)2 + (2 − 5)2 = √13 = 3.606 

𝑑𝐴𝐷 = √(1 − 4)2 + (2 − 9)2 = √5 = 7.616 

⋮ 

𝑑𝐷𝐸 = √(4 − 5)2 + (9 − 7)2 = √5 = 2.236 

So, the Euclidean distance matrix is obtained as follows 
 A B C D E 

A 0 2.236068 3.605551 7.615773 6.403124 

B 2.236068 0 4 8.062258 6.324555 

C 3.605551 4 0 4.123106 2.828427 

D 7.615773 8.062258 4.123106 0 2.236068 

E 6.403124 6.324555 2.828427 2.236068 0 

2) Canberra Metric 

The following is how to calculate the Canberra Metric by referring to Equation (3) 
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𝑑𝐴𝐵 =
|1 − 3|

(1 + 3)
+
|2 − 1|

(2 + 1)
=
2

4
+
1

3
= 0.833 

𝑑𝐴𝐶 =
|1 − 3|

(1 + 3)
+
|2 − 5|

(2 + 5)
=
2

4
+
3

7
= 0.929 

𝑑𝐴𝐷 =
|1 − 4|

(1 + 4)
+
|2 − 9|

(2 + 9)
=
3

5
+

7

11
= 1.236 

⋮ 

𝑑𝐷𝐸 =
|4 − 5|

(4 + 5)
+
|9 − 7|

(9 + 7)
=
1

9
+

2

16
= 0.236 

So, the Canberra Metric matrix is obtained as follows 
 A B C D E 

A 0 0.833333 0.928571 1.236364 1.222222 

B 0.833333 0 0.666667 0.942857 1 

C 0.928571 0.666667 0 0.428571 0.416667 

D 1.236364 0.942857 0.428571 0 0.236111 

E 1.222222 1 0.416667 0.236111 0 

3) Czekanowski Coefficient 

The following is how to calculate the Czekanowski Coefficient by referring to Equation (4) 

𝑑𝐴𝐵 = 1 −
2{min(1, 3) + min(2, 1)}

(1 + 3) + (2 + 1)
= 1 −

2 × {1 + 1}

7
= 0.429 

𝑑𝐴𝐶 = 1 −
2{min(1, 3) + min(2, 5)}

(1 + 3) + (2 + 5)
= 1 −

2 × {1 + 2}

11
= 0.455 

𝑑𝐴𝐷 = 1 −
2{min(1, 4) + min(2, 9)}

(1 + 4) + (2 + 9)
= 1 −

2 × {1 + 2}

16
= 0.625 

⋮ 

𝑑𝐷𝐸 = 1 −
2{min(4, 5) + min(9, 7)}

(4 + 5) + (9 + 7)
= 1 −

2 × {4 + 7}

25
= 0.12 

So, the Czekanowski Coefficient distance matrix is obtained as follows 

 A B C D E 

A 0 0.428571 0.454546 0.625 0.6 

B 0.428571 0 0.333333 0.529412 0.5 

C 0.454546 0.333333 0 0.238095 0.2 

D 0.625 0.529412 0.238095 0 0.12 

E 0.6 0.5 0.2 0.12 0 

B. Example of Grouping Object with the Complete Linkage Method 

After calculating the distance between objects using various similarity measures, namely Euclidean, Canberra 

Metric, and Czekanowski Coefficient, the next step is to group objects based on their similarity using the Complete 

Linkage method. The following will give an example of how to group objects using the Complete Linkage method 

with the Euclidean distance measure. 

1) The first stage is to determine the smallest 𝑑𝑖𝑗  from the Euclidean distance matrix 
 A B C D E 

A 0 2.236068 3.605551 7.615773 6.403124 

B 2.236068 0 4 8.062258 6.324555 

C 3.605551 4 0 4.123106 2.828427 

D 7.615773 8.062258 4.123106 0 2.236068 

E 6.403124 6.324555 2.828427 2.236068 0 
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In the first stage, objects D and E are combined into one group because the two objects have the highest 

similarity which is indicated by the minimum distance between the two objects. 

2) The second stage is to determine the distance of objects A, B, and C to the group (DE) based on equation 

(1), which is as follows 

𝑑(𝐷𝐸)𝐴 = max{𝑑𝐷𝐴, 𝑑𝐸𝐴} = max{7.615773, 6.403124} = 7.615773 

𝑑(𝐷𝐸)𝐵 = max{𝑑𝐷𝐵 , 𝑑𝐸𝐵} = max{8.062258, 6.324555} = 8.062258 

𝑑(𝐷𝐸)𝐶 = max{𝑑𝐷𝐶 , 𝑑𝐸𝐶} = max{4.123106, 2.828427} = 4.123106 

so that a new distance matrix is obtained as follows 
 (DE) A B C 

(DE) 0 7.615773 8.062258 4.1231061 

A 7.615773 0 2.236068 3.605551 

B 8.062258 2.236068 0 4 

C 4.123106 3.605551 4 0 

3) In the third stage, a new group is formed, namely the combination of objects A and B because the distance 

between the two objects is minimum so that group (AB) is obtained. Next, the distance between (AB), (DE), and 

C is calculated based on Equation (1), as follows 

𝑑(𝐴𝐵)(𝐷𝐸) = max{𝑑𝐴(𝐷𝐸), 𝑑𝐵(𝐷𝐸)} = max{7.615773, 8.062258} = 8.062258 

𝑑(𝐴𝐵)𝐶 = max{𝑑𝐴𝐶 , 𝑑𝐵𝐶} = max{3.605551, 4} = 4 

so that a new distance matrix is obtained as follows 
 (DE) (AB) C 

(DE) 0 8.062258 4.123106 

(AB) 8.062258 0 4 

C 4.123106 4 0 

After calculating the new distance matrix, it is found that the minimum distance occurs between object C and 

group (AB) so that object C joins group (AB) to become group (CAB). 

4) The fourth stage is to create a new distance matrix between groups (CAB) and (DE) based on Equation (1). 

𝑑(𝐶𝐴𝐵)(𝐷𝐸) = max{𝑑𝐶(𝐷𝐸), 𝑑(𝐴𝐵)(𝐷𝐸)} = max{4.123106, 8.062258} = 8.062258 

so that a new distance matrix is obtained as follows 
 (DE) (CAB) 

(DE) 0 8.062258 

(CAB) 8.062258 0 

The new matrix obtained in stage four shows that the grouping of objects in Table 1 forms 2 large groups where 

group 1 consists of objects D and E, and group 2 consists of objects A, B and C. The results of this grouping can 

be shown visually using the dendrogram in Fig. 2 below 

 

 
Fig. 1 Complete Linkage Dendrogram Using Euclidean Distance 
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The stages of grouping objects with the Canberra Metric and Czenowski Coefficient similarity measures using 

the Complete Linkage method are the same. With the help of computing, grouping results are obtained as in Fig. 

2 and Fig. 3. 

 

 
Fig. 2 Complete Linkage Dendrogram Using Canberra Metric Distance 

 

 
Fig3. Complete Linkage Dendrogram Using Czekanowski Coefficient Distance 

 

The results of grouping objects using the Complete Linkage method, which measured their similarity using the 

Canberra Metric distance and the Czenowski Coefficient, are the same. However, the results of these two 

groupings are different from object groupings when using Euclidean distance as a measure of object similarity. 

To find out the best similarity measure in grouping objects in Table 1, an evaluation was carried out using the 

Agglomeration Coefficient (AC) measure. With the help of computing, the AC for Euclidean distance, Canberra 

Metric, and Czenowski Coefficient are 0.6788921, 0.5846755, and 0.5727238 respectively. The conclusion 

obtained from this calculation is that Euclidean distance is more used to group objects (with the Complete Linkage 

method) than Canberra Metric and Czenowski Coefficient. 

C. Evaluation of Object Similarity Measures by Applying the Complete Linkage Method 

In the previous sub-chapter, we explained the stages of grouping objects using similarity measures, namely 

Euclidean distance, Canberra Metric, and Czekanowsi Coefficient along with evaluating the grouping results. 

Based on the example in the previous sub-chapter, it was found that Euclidean distance is the best measure of 

similarity as indicated by the maximum Agglomeration Coefficient value. 

To validate whether the conclusions from the evaluation using the example data above are correct, in this sub-

chapter an evaluation will be carried out on the Euclidean distance, Canberra Metric, and Czekanowsi Coefficient. 

This evaluation was carried out by generating data with the number of observations being 10 which were repeated 

100 times with the number of variables being 2, then the 100 datasets calculated the similarity measure using 

Euclidean distance, Canberra Metric, and Czekanowsi Coefficient and continued with grouping objects using the 

Complete Linkage method. After the grouping is carried out, it is continued by calculating the Agglomeration 

Coefficient for each grouping, so that 100 Agglomeration Coefficients are obtained for each distance. The way to 
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determine the best distance is by ranking the Agglomeration Coefficient. The smallest ranking is given to the 

smallest Agglomeration Coefficient, then the ranking results are added up. The best measure of object/distance 

similarity is indicated by the largest number of rankings. Apart from that, the evaluation is also based on the 

average Agglomeration Coefficient for each object similarity/distance measure. 

Table 2 below shows the Agglomeration Coefficient for each iteration for various object similarity/distance 

measures. 
TABLE 2 

EVALUATION RESULT OF OBJECT SIMILARITY MEASURES 

Iteration Euclidean Canberra Czekanowski 
Euclidean 

Rank 

Canberra 

Rank 

Czekanowski 

Rank 

1 0.6514446 0.6826444 0.6826444 1 2.5 2.5 

2 0.7915499 0.7495870 0.749587 3 1.5 1.5 

3 0.6959237 0.7508384 0.7508384 1 2.5 2.5 

4 0.6966339 0.6916998 0.6916998 3 1.5 1.5 

5 0.8088821 0.7249177 0.7249177 3 1.5 1.5 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

98 0.7146157 0.6828146 0.6828146 3 1.5 1.5 

99 0.8321283 0.7395675 0.7395675 3 1.5 1.5 

100 0.7771369 0.7013668 0.7013668 3 1.5 1.5 

V. DISCUSSION 

The sum of Euclidean distance rankings, Canberra Metric, and Czekanowsi Coefficient are 268, 166, and 166 

respectively. Meanwhile, the average Agglomeration Coefficient of grouping objects using these distances is 

0.7647577, 0.7306839, and 0.7306839, respectively. Based on the simulation, it can be concluded that Euclidean 

distance is better used as a measure of object similarity compared to Canberra Metric and Czekanowski 

Coefficient distances. The results of grouping objects using the Canberra Metric and Czekanowski Coefficient 

distances tend to be the same and the results of grouping distances using these two measures tend to be different 

from the results of grouping using Euclidean distance. This tendency means that the grouping results between the 

three object similarity measures are the same. 

Therefore, the Euclidean distance is very popular for use as a measure of object similarity in group/cluster 

analysis. Apart from that, the advantage of the Euclidean distance compared to the Canberra Metric distance and 

the Czekanowski Coefficient is that the Euclidean distance can be used for variables with negative values, while 

the Canberra Metric distance and the Czekanowski Coefficient cannot be used for variables with negative values 

because the Canberra Metric formula contains the absolute difference in variable values between observations. 

and the Czekanowski Coefficient formula looks for the minimum value of a variable between objects, so that if 

these two distances are applied to variables with negative values, inconsistent results will be obtained. Apart from 

that, if a new object is added which may be an outlier, it does not affect the Euclidean distance, but it does affect 

the Canberra Metric distance and Czekanowski Coefficient. 

VI. CONCLUSIONS 

The conclusion contains a summary of what is learned from the results obtained, what needs to be improved 

in further study. Other common features of the conclusions are the benefits and applications of the research, 

limitation, and the recommendations based on the results obtained.  

The conclusion obtained from evaluating measures of object similarity, namely Euclidean distance, Canberra 

Metric, and Czekanowski Coefficient by applying the Complete Linkage method, concluded that Euclidean 

distance is better used as a measure of object similarity in grouping cases compared to Canberra Metric and 

Czekanowski Coefficient. 

Suggestions that can be given for further evaluation are as follows: (1) Evaluation should be carried out by 

combining grouping methods, such as Single Linkage, Average Linkage, etc; (2) The criteria for comparing 

groups should not only use the Agglomeration Coefficient; (3) It is best to carry out simulations for various 

numbers of variables and the number of objects used in one iteration; (4) It is recommended that simulated 

generation data be created in three scenarios, namely visually objects have formed very clear groups, visually 

objects have formed unclear groups, and visually objects have not formed unclear groups. With a design according 

to the suggestions, a valid conclusion can be obtained. 
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